Automatic delineation of geomorphological slope-units and their optimization for landslide susceptibility modelling

Massimiliano Alvioli ${ }^{1}$, Ivan Marchesini ${ }^{1}$, Paola Reichenbach ${ }^{1}$, Mauro Rossi ${ }^{1}$, Francesca Ardizzone 1, Federica Fiorucci ${ }^{1}$, and Fausto Guzzetti ${ }^{1}$
${ }^{1}$ CNR IRPI, via Madonna Alta 126, I-06128 Perugia, Italy
Correspondence to: Massimiliano Alvioli (massimiliano.alvioli[AT]irpi.cnr.it)

Abstract

Automatic subdivision of landscapes into terrain units remains a challenge. Slope-units are terrain units bounded by drainage and divide lines, but their use in hydrological and geomorphological studies is limited because of the lack of reliable software for their automatic delineation. We present the r.slopeunits software for the automatic delineation of slope-units, given a digital elevation model and a few input parameters. We further propose an approach for the selection

1 Introduction

The automatic subdivision of large and complex geographical areas, or even entire landscapes, into reproducible, geomorphologically coherent terrain units remains a conceptual problem and an operational challenge. Terrain units (TU) are subdivisions of the terrain that maximize the within-unit (internal) homogeneity and the between-unit (external) heterogeneity across distinct physical or geographical boundaries (Guzzetti et al., 1999; Guzzetti, 2006; Komac, 2006; Saito et al., 2011; Sharma and Mehta, 2012; Fall et al., 2006; Li et al., 2012; Erener and Düzgün, 2012; Komac, 2012; Schaetzl et al., 2013; Mashimbye et al., 2014). A Slope-unit (SU) is a type of morphological TU bounded by drainage and divide lines (Carrara, 1988; Carrara et al., 1991, 1995; Guzzetti et al., 1999), and corresponds to what a geomorphologist or an hydrologist would recognize as a single slope, a combination of adjacent slopes, or a small catchment. This makes SU easily recognizable in the field, and in topographic base maps. Compared to other terrain subdivisions, including grid-cells or unique-conditions units (Guzzetti et al., 1999; Guzzetti, 2006), SU are related to the hydrological and geomorphological conditions and processes that shape natural landscapes. For this reason, SU are well suited for hydrological and geomorphological studies, and for landslide susceptibility (LS) modelling and zonation (Carrara et al., 1991, 1995; Guzzetti et al., 1999; Guzzetti, 2006).

SU can be drawn manually from topographic maps of adequate scale and quality (Carrara, 1988). However, the manual delineation of SU is time consuming and error prone, limiting the applicability to very small areas. Manual delineation of

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

SU is also intrinsically subjective. This reduces the reproducibility - and hence the usefulness - of the terrain subdivision. Alternatively, SU can be delineated automatically using specialized software. The latter exploits digital representations of the terrain, typically in the form of a Digital Elevation Model (DEM) (Carrara, 1988), or adopts image segmentation approaches (Flanders et al., 2003; Dragut and Blaschke, 2006; Aplin and Smith, 2008; Zhao et al., 2012). In both cases, the result is a geomorphological subdivision of the terrain into mapping units bounded by drainage and divide lines, which can be represented by polygons (in vector format) or groups of grid-cells (in raster format).

Large and complex geographical areas or landscapes can be partitioned by different SU subdivisions. Unique (i.e., "universal") subdivisions do not exist, and optimal (best) terrain subdivisions depend on multiple factors, including the size and complexity of the study area, the quality and resolution of the available terrain elevation data, and - most importantly - the purpose of the terrain subdivision (e.g., geomorphological or hydrological modelling, landslide detection from remote-sensing images, landslide susceptibility, hazard or risk modelling). An open problem is that an optimal SU subdivision for LS modelling cannot be decided unequivocally, a priori, or in an objective way, and the quality and usefulness of a LS zonation depends on the SU subdivision (Carrara et al., 1995).

In this work, we propose an innovative modelling framework to determine an optimal terrain subdivision based on SU best suited for LS modelling. For the purpose, we also present the new r.slopeunits software for the automatic delineation of SU, and we propose a method to optimize the terrain subdivision in SU performed by the software. The r.slopeunits software is written in Python for the GRASS GIS (Neteler and Mitasova, 2007), and automates the delineation of SU, given a DEM and a set of user-defined input parameters. We tested the r.slopeunits software and the proposed optimization procedure for LS modelling in a large area in Central Italy, where sufficient landslide and thematic information was available to us (Cardinali et al., 2001, 2002). To model LS, we considered slow to very slow moving shallow slides, deep-seated slides, and earth flows, and we excluded rapid to fast-moving landslides, including debris flows and rock falls. The r.slopeunits software performs the delineation of the SU , and does not perform the LS modelling. For the later, we exploit specific modelling software (Rossi et al., 2010).

The paper is organized as follows. Fist, we present the proposed approach for the delineation of an optimal terrain subdivision into SU best suited for LS modelling, based on an optimization method (Section 2). Next (Section 3), we present the method for the automatic delineation of SU, which we have implemented in the r.slopeunits software for the GRASS GIS, and (Section 4) we describe a segmentation metric useful for the evaluation of the SU internal homogeneity. Next, we introduce landslide susceptibility modelling (Section 5) and our optimization approach to the SU partitioning (Section 6). This is followed (Section 7) by a description of the study area, in Central Italy, and of the data used for LS modelling. In Section 8 we discuss the results obtained in our study area, in Central Italy, and we conclude (Section 9) summarizing the lessons learnt, and outlining possible uses of the r.slopeunits software and of the optimization procedure.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

2 Modelling framework

We propose a new modelling framework for the parametric delineation of slope-units (SU) and their optimization, as a function of a few input parameters, for the specific purpose of determining landslide susceptibility (LS) adopting statistically-based classification methods (Guzzetti et al., 1999, 2005, 2006; Guzzetti, 2006; Rossi et al., 2010). The framework is exemplified in

2a Second, the internal homogeneity and external inhomogeneity of each SU subdivision - required by any meaningful terrain subdivision - are defined in terms of terrain aspect, measured by the circular variance of the unit vectors perpendicular to the local topography represented by all grid cells in a slope-unit. For each set of SU obtained in step 1 using different input parameters, the quality of the aspect segmentation is evaluated adopting a general-purpose segmentation objective function, presented in Section 4.

2b At the same time, for each set of SU obtained in step 1, a LS model is calibrated adopting a Logistic Regression Model (LRM) for SU classification (Section 5). In the LRM, each SU is classified as stable (i.e., free of landslides) or unstable (i.e., having landslides) depending on a (in our case linear) combination of the local terrain conditions (i.e., the geoenvironmental variables). The performance of the model calibration is evaluated using the Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC), referred to as $\mathrm{AUC}_{\mathrm{ROC}}$ metric, a standard and objective metric commonly adopted in the literature to evaluate the performance of LS models (Rossi et al., 2010).

3 Lastly, an overall (combined) objective function is defined by properly combining the segmentation (step 2 a) and the $A U_{\text {ROC }}$ (step 2b) objective functions, as described in Section 6. Maximization of this quantity allows to single out the optimal set of SU (i.e., the optimal terrain subdivision) that, simultaneously, (i) provides a good aspect segmentation, and (ii) results in an effective calibration of the LS model.

4 Maximization of the combined objective function allows selecting objectively the optimal combination of the input terrain modelling parameters best suited for LS modelling (step 4 in Fig. 1) and the corresponding SU subdivision.

In summary, the proposed modelling framework relies on an optimization procedure that maximizes a proper, specific function that contains information on (i) the morphology of the study area, represented by the aspect segmentation metric (step 2 a), and on (ii) the specific landslide processes under investigation (in our case slow to very slow moving shallow slides, deep-seated slides, and earth flows), represented by the LS model performance and the associated $\mathrm{AUC}_{\mathrm{ROC}}$ metric (step 2b). The optimization approach removes subjectivity from the SU delineation algorithm, and produces a result that is objective and

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
completely reproducible. This is a significant advantage over manual methods (Carrara, 1988), or specialized software that needs multiple parameters and specific calibration procedures.

3 Automatic delineation of slope-units

Automatic delineation of SU can be performed adopting two strategies. The first strategy defines a large number of small homogeneous areas, and enlarges or aggregates them progressively, maximizing the aspect homogeneity of the SU (Zhao et al., 2012). Following this approach, the size of the initial polygons representing the small homogeneous areas is significantly smaller than the size of the desired (final) SU , which results from the aggregation of multiple areas performed maximizing an objective function (Espindola et al., 2006). The second strategy defines an initial small number of large or very large areas, and reduces progressively their size until a satisfactory result is obtained (Carrara, 1988; Carrara et al., 1991, 1995). In the second strategy, the study area is subdivided into large sub-catchments, which can be further subdivided into left and right sides (looking downstream with respect to the main drainage), with the resulting two sides named half-basins (HB). The size of the initial HB is much larger than the desired size for the SU .

For both strategies, the final subdivision of the landscape into SU does not maintain memory of the terrain partitioning represented by the initial areas or HB. In both strategies, deciding when to stop the aggregation or the partitioning to obtain a terrain subdivision suitable for a specific use (in our case LS modelling) is critical. Both strategies are subject to the selection of user-defined modelling parameters, which introduce subjectivity and reduce the reproducibility of the results. These are conceptual and operational problems that hamper the design and the implementation of an automatic procedure for the effective delineation of terrain subdivisions based on SU (Carrara et al., 1995; Espindola et al., 2006; Dragut et al., 2010, 2014).

3.1 Slope-unit delineation algorithm

For the delineation of the SU , we adopt the second strategy outlined above i.e., we start from a relatively small number of large HB, and we gradually reduce their size by subdividing the HB into smaller TU. Hydrological conditions and terrain aspect requirements control the subdivision of the large HB into smaller TU. The approach is adaptive, and results in a geomorphological subdivision of the terrain based on SU of different shapes and sizes that capture the real ("natural") subdivisions of the landscape.

We implemented the approach to the delineation of SU in a specific algorithm, coded in the r.slopeunits software (Fig. 2). The algorithm (and the software) uses the hydrological module r.watershed (Metz et al., 2011) available in the GRASS GIS. Using a DEM to represent terrain morphology, r.watershed produces a map of HB adopting an advanced flow accumulation (FA) area analysis. Each grid-cell in the DEM is attributed the total contributing area FA, based on the number of cells that drain into it. The FA values are low along the divides and increase downstream along the drainage lines. This information is used to single out streams and divides i.e., the main elements bounding a SU (Carrara, 1988). The r.watershed module can use single (Single Flow Direction, SFD) or multiple (Multiple Flow Direction, MFD) flow direction strategies. In the SFD strategy, water is routed to the single neighbouring cell with the lowest elevation, and in the

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

MFD strategy water is distributed to all the cells lower in elevation, proportionally to the terrain slope in each direction. The r.slopeunits software adopts the MFD strategy to distribute water to the neighbouring cells.

Ther.slopeunits software requires a DEM, demmap, accepts an optional layer showing alluvial plains (AP), plainsmap, and the following user-defined numerical parameters (A in Fig. 2): (i) the flow accumulation area (FA) threshold, thresh, (ii) the minimum surface area for the SU , areamin (in square meters), (iii) the minimum circular variance (Nichols, 2009) of terrain aspect within a slope-unit, cvmin, $(i v)$ a reduction factor, $r f,(v)$ the maximum surface area for the SU , maxarea (in square meters, optional), and ($v i)_{\text {a threshold value for the cleaning procedures, cleansize (in square meters, optional; }}$ see Section 3.2). For simplicity, in the following we refer to the numerical values of thresh, areamin, cvmin and rf as t, a, c and r, respectively.

The software adopts an iterative approach to partition a landscape into SU. In the first iteration, r.watershed uses the threshold t controlling the partitioning into HB. The parameter t has to be smaller than the maximum surface accumulation area (FA) for the study area to allow for the delineation of at least two HB large enough to be further subdivided. Grid-cells with FA $>t$ are recognized as drainage lines (i.e., streams), and used to delineate the river network by r. watershed, grouping all grid-cells in the DEM that drain into a given stream segment. These cells collectively represent the catchment drained by the stream segment, which can be further subdivided into left and right HB (B in Fig. 2). A low value of the contributing (flow accumulation, FA) area t results in a dense hydrological network draining a large number of small HB , and a large value of t results in a reduced number of streams draining a smaller number of relatively large HB.

At each iteration, where a GIS layer showing alluvial plains (AP) is available, r.slopeunits identifies the grid-cells in the AP and excludes them from the analysis (C in Fig. 2). When the SU are exploited for the analysis of the processes causing slope instability, the exclusion is justified by the empirical observation that landslides do not occur in plain areas. The value of the areamin parameter a, defines the smallest possible (planimetric) area for a SU. The circular variance is defined as $1-|\boldsymbol{R}| / N_{v}$, in the range between 0 and 1 , where N_{v} is the number of grid-cells in each HB and $|\boldsymbol{R}|$ is the magnitude of the vector \boldsymbol{R} that results from the sum of all unit vectors describing the orientation of each grid-cell. As an example, Fig. 3A shows that a group of unit vectors dispersed 23 degrees apart, on average, is characterized by a circular variance of 0.1 , and Fig. 3B shows that a group of unit vectors dispersed 62 degrees apart, on average, is characterized by a circular variance of 0.6. Thus, a value of 0.1 of the circular variance represents grid-cells facing all nearly in the same direction, whereas a value of 0.6 represents more dispersed grid-cells. In the algorithm, the circular variance is controlled by the value of the cvmin parameter c, affecting the homogeneity of terrain aspect in the HB. Small values of c result in more uniform HB, and large values of c in less uniform HB , in terms of terrain aspect.

At each iteration, r.watershed splits each existing parent half-basin, $\mathrm{HB}_{\text {parent }}(\mathrm{D}$ in Fig. 2) into nested child half-basins, $\mathrm{HB}_{\text {child }}$. The average area of the $\mathrm{HB}_{\text {child }}$ defined for each $\mathrm{HB}_{\text {parent }}$ is checked against a. When the average area is smaller than a, the subdivision is rejected and the $\mathrm{HB}_{\text {parent }}$ is selected as a candidate SU . When the average area is larger than a, the procedure keeps the $\mathrm{HB}_{\text {child }}$ for the next step of the analysis. The rejection procedure prevents very small HB from being selected as candidate SU .

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

The next step of the procedure consists in comparing the size and circular variance of each $\mathrm{HB}_{\text {child }}$ with the user-defined values a and c. Where the circular variance is smaller than c, or the size is smaller than a, the $\mathrm{HB}_{\text {child }}$ is taken as a candidate SU (E in Fig. 2). If the user defines the optional input parameter maxarea, the control on the circular variance is not performed for the $\mathrm{HB}_{\text {child }}$ having a size larger than maxarea. This imposes a constraint on the maximum size of the candidate SU (not shown in E in Fig. 2). The remaining $\mathrm{HB}_{\text {child }}$ are fed to the next iteration of r. watershed, which is initialized using a smaller value of t. At the i-th iteration, the value of t depends on the value of the reduction factor r, according to $t_{i+1}=t_{i}-t_{i} / r$ (F in Fig. 2). The decrease of t_{i} is faster for small values of $r \geq 2$. We checked empirically that values of $r>10$ lead to visually better results, at least in our study area. This is due to the fact that a slow decrease of t_{i} allows for a better (finer) control on the subdivision of the parent half-basin, $\mathrm{HB}_{\text {parent }}$. On the other hand, a fast decrease obtained with $r=2$ prevents the algorithm from checking if intermediate values of t_{i} produce candidate SU . Thus, a slow decrease in t_{i} results in a larger number of iterations, which produce better results at the expenses of a longer computing time required to complete the iterations.

At each iteration the $\mathrm{HB}_{\text {child }}$ are processed again by r. watershed as $\mathrm{HB}_{\text {parent }}$. The iterative procedure ends when the entire study area is subdivided into candidate SU that match the user requirements, in terms of minimum area (a) and circular variance (c). In the resulting map, the size and shape of the candidate SU can be determined by the constraint of minimum surface area, or by the constraint of the minimum circular variance of the terrain aspect. The final terrain subdivision contains candidate SU whose minimum size approximates a.

The final SU partitioning is obtained after an additional (cleaning) step intended to identify and process candidate SU exhibiting unrealistic or unacceptable size or shape (G in Fig. 2). This is discussed in the next Section.

3.2 Slope-units cleaning procedure

The r.slopeunits software may produce locally unrealistic candidate SU , which are too small, too large, or odd shaped. As an example, in large open valleys where terrain is flat or multiple channels join in a small area, unrealistically small subdivisions can be produced. Another example is represented by unrealistically elongated or large candidate SU found along regular and planar slopes. These terrain subdivisions, although legitimate from the algorithm hydrological perspective, are problematic for practical applications and should be revised and removed, eventually. Very small candidate SU consisting of a few grid-cells are often the result of artifacts (errors) in the DEM. These candidate SU should also be removed. To remove candidate SU with unrealistic or unwanted sizes (G in Fig. 2), we have implemented three distinct software tools based on three different methods. The three methods require the user to set the cleansize parameter that imposes a strict constraint on the minimum possible size (planimetric area) for a slope-unit.

The first method simply removes all candidate $S U$ smaller than cleansize. The adjacent candidate $S U$ are enlarged to fill the area left by the removed units, using the r.grow GRASS GIS module. The second method, in addition to removing all candidate SU smaller than cleansize, it removes odd-shaped polygons from the set of the candidate SU. Enabled via the $-m$ flag in combination with cleansize, the second method removes markedly elongated candidate SU , with a width smaller than two grid-cells. The third method merges small candidate SU with neighbouring ones based on the average terrain aspect. Enabled via the -n flag in combination with cleansize, the third method calculates the average terrain aspect of all

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
the grid-cells in each small candidate SU . The average aspects of the neighboring SU are compared, and the two adjacent units exhibiting the smallest difference in average terrain aspect are merged, provided that the SU that is removed shares a significant part of its boundary with the neighboring unit. The final result is a terrain subdivision in which the vast majority of the SU has an area larger than cleansize. A drawback of the third method is that it is significantly more computer intensive than the other two methods, requiring longer processing times.

4 Segmentation metric

To evaluate the terrain partitioning into SU we use a simple metric originally proposed for the evaluation of the quality of a segmentation result (Espindola et al., 2006). In digital image processing, segmentation consists in the process of partitioning an image into sets of pixels, such that pixels within the same set share certain common characteristics. Here, we consider the terrain aspect grid map as an image to be segmented, and we assume that the segmentation metric proposed by Espindola et al. (2006) is appropriate to evaluate the terrain partition into SU. We base the assumption on the observation that the metric makes a straightforward evaluation of the internal homogeneity of the SU using the local aspect variance V, and the external heterogeneity of the SU using the autocorrelation index, I. The two quantities are defined as follows:
$V=\frac{\sum_{n} s_{n} c_{n}}{\sum_{n} s_{n}}$,
and
$I=\frac{N \sum_{n, l} w_{n l}\left(\alpha_{n}-\bar{\alpha}\right)\left(\alpha_{l}-\bar{\alpha}\right)}{\left(\sum_{n}\left(\alpha_{n}-\bar{\alpha}\right)^{2}\right)\left(\sum_{n, l} w_{n l}\right)}$,
where n labels all the $N \mathrm{SU}$ in a given partition, s_{n} is the surface area of the n-th SU, c_{n} is the circular variance of the aspect in the n-th SU, α_{n} is the average aspect of the n-th $\mathrm{SU}, \bar{\alpha}$ is the average aspect of the entire terrain aspect map, and $w_{n l}$ is an indicator for spatial proximity, equal to unity if $\mathrm{SU} n$ and l are adjacent, zero otherwise. The local variance V, defined in Eq. (1), assigns more importance to large SU , avoiding numerical instabilities produced by small SU. The autocorrelation index I of Eq. (2) has minima for partitions that exhibit well-defined boundaries between different SU .

The optimal selection of the input parameters is the one that combines small V and small I. This is quantified by the following objective function (Espindola et al., 2006):

$$
\begin{equation*}
F(V, I)=\frac{V_{\max }-V}{V_{\max }-V_{\min }}+\frac{I_{\max }-I}{I_{\max }-I_{\min }} \tag{3}
\end{equation*}
$$

where $V_{\min (\max)}$ and $I_{\min (\max)}$ are the minimum (maximum) values of the quantities in Eqs. (1) and (2) as a function of the input parameters. To calculate I, we rewrite Eq. (2) to make it consistent with the terrain aspect map. The aspect map contains values in degrees, and the average values and products cannot be taken straightforwardly, and the following definitions have to be considered. The average values of the angles is a vectorial sum of unit vectors, so that
$\bar{\alpha}=\operatorname{Arctan}\left(\frac{\sum_{j} \sin \alpha_{j}}{\sum_{j} \cos \alpha_{j}}\right)$,

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
where the index j runs over all the grid-cells in the terrain aspect map. A similar definition holds for α_{i}, the average aspect inside the i-th slope-unit, if the sum in Eq. (4) is limited to the grid-cells belonging to the i-th SU. The difference $\left(\alpha_{i}-\bar{\alpha}\right)$ should also be intended vectorially, as follows:
$\alpha_{i}-\bar{\alpha}=\operatorname{Arctan}\left(\frac{\sin \alpha_{i}-\sin \bar{\alpha}}{\cos \alpha_{i}-\cos \bar{\alpha}}\right)$.
5 Lastly, the product at the numerator of Eq. (2) is taken as the scalar product of the vectors $\left(\alpha_{i}-\bar{\alpha}\right)$ and ($\left.\alpha_{j}-\bar{\alpha}\right)$, as follows:
$\left(\alpha_{i}-\bar{\alpha}\right) \cdot\left(\alpha_{j}-\bar{\alpha}\right)=\cos \theta_{i} \cos \theta_{j}+\sin \theta_{i} \sin \theta_{j}$,
where
$\theta_{i}=\operatorname{Arctan}\left(\frac{\sin \alpha_{i}-\sin \bar{\alpha}}{\cos \alpha_{i}-\cos \bar{\alpha}}\right)$,
$\theta_{j}=\operatorname{Arctan}\left(\frac{\sin \alpha_{j}-\sin \bar{\alpha}}{\cos \alpha_{j}-\cos \bar{\alpha}}\right)$.
Care must be taken in expressing angles and arcs consistently in degrees, or radians.
The segmentation metric $F(V, I)$ is a measure of the degree of fulfillment of the SU internal homogeneity requirement, and it is related only to the SU geometrical and morphological delineation. The metric can be used to define the "optimal" (best) partition of the territory in terms of aspect segmentation, by maximization of $F(V, I)=F(V(a, c), I(a, c))$ as a function of the a and c user-defined modelling parameters.

5 Landslide susceptibility modelling

Landslide susceptibility (LS) is the likelihood of landslide occurrence in an area, given the local terrain conditions, including topography, morphology, hydrology, lithology, and land use (Brabb, 1984; Guzzetti et al., 1999; Guzzetti, 2006). Various types of LS modelling approaches are available in the literature. The approaches differ - among other things - on the type of the TU used to partition the landscape, and to ascertain LS (Guzzetti et al., 1999; Huabin et al., 2005; Guzzetti, 2006; Pardeshi et al., 2013). Among the many available types of TU (Guzzetti, 2006), SU have proved to be effective terrain subdivisions for LS modelling.

In this work, we prepare LS models adopting a single multivariate statistical classification model. For the purpose, we use a Logistic Regression Model (LRM) to quantify the relationship between dependent (landslide presence/absence) and independent (geo-environmental) variables. We use the presence/absence of landslides in each SU as the grouping (i.e., dependent) variable. Adopting a consolidated approach in our study area (Carrara et al., 1991, 1995; Guzzetti et al., 1999), SU with 2% or more of their area occupied by landslides are considered unstable (having landslides), and SU with less than 2% of the area occupied by landslides are considered stable (free of landslides). The 2% threshold value depends on the accuracy of a typical landslide inventory map (Carrara et al., 1991, 1995; Guzzetti et al., 1999; Santangelo et al., 2015). We acknowledge that the selection of the 2% threshold may influence the selection of the appropriate SU subdivision, and may affect the results of the LS zonation. Examination of different thresholds is not investigated in the present work, because it is not an input parameter of the

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
r.slopeunits software, and does not change the logic of the approach or the rationale behind our optimization procedure. Users of the r.slopeunits software may select a different value for the landslide presence/absence threshold in the LRM (or any other classification model, where considered more appropriate, in different study areas, and with different input data. Numerical (i.e., terrain elevation, slope, curvature, and other variables derived from the DEM), and categorical (i.e., lithology and land use) variables are used as explanatory (i.e., independent) variables in the LS modelling. Each SU is characterized by (i) statistics calculated for all the numerical variables, and (ii) percentages of all classes for the categorical variables.

The LS evaluation is repeated many times using different SU terrain subdivisions obtained changing the r.slopeunits (a, c) modelling parameters, and cleaned from small areas using the first (and simplest) method described in Section 3.2. We evaluate the performance skills of the different LS models calculating the $\mathrm{AUC}_{\text {ROC }}$ (Rossi et al., 2010). ROC curves show the performance of a binary classifier system when different discrimination probability thresholds are chosen (Fawcett, 2006). A ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) for the different thresholds. The area under the ROC curve, $\mathrm{AUC}_{\mathrm{ROC}}$, ranging from 0 to 1 , is used to measure the performance of a model classifier that in our case corresponds to the LS model.

Hereafter, we quantify the $\mathrm{AUC}_{\mathrm{ROC}}$ metric with the $R(a, c)$ function, for each value of the a (surface area) and c (circular variance) input parameters of the r.slopeunits software. We stress that we use the $A U C_{R O C}$ metric to evaluate the fitting performance of the LS model i.e., to evaluate the ability of the LS model to fit the same landslide set used to construct the LS model (the landslide training set), and not an independent landslide validation set (Guzzetti et al., 2006; Rossi et al., 2010). This is done purposely, because the scope of the procedure is not to evaluate the performance of the LS classification but to help determining an optimal terrain subdivision for LS modeling, and thus before any LS model is available for proper validation. When an optimal SU subdivision is obtained (see Section 6), and a corresponding LS model is prepared, the prediction skills of the model can be evaluated using independent landslide information, where this is available (Guzzetti et al., 2006; Rossi et al., 2010).

In addition to the $\mathrm{AUC}_{\text {ROC }}$, which is a direct measure of the fitting/prediction performance of a binary classifier, the performance of the LRM model can be analysed in terms of how the different input variables (both numerical and categorical) contribute to the final result (Budimir et al., 2015). In the model, a p-value can be associated to each variable, and used to establish the significance of the variable in the LRM. The fraction of significant variables used by the LRM can be used to qualitatively understand the behaviour of the classification model as a function of the r.slopeunits software input parameters or, in turn, as a function of the average size of the SU. We expect the LRM to use the input data less efficiently when the average SU size grows, resulting in a smaller number of significant input variables.

6 Optimization of SU partitioning for LS zonation

Once, for all the SU sets computed using different modelling parameters (i.e., different a (surface area) and c (circular variance) values), (i) the SU terrain aspect segmentation metric $F(a, c)$ - that assesses how well the requirements of internal homogeneity/external heterogeneity are fulfilled - has been established (2a in Fig. 1 and Section 4 (Espindola et al., 2006)), and (ii)

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
the performance of the individual LS models are estimated using the $\mathrm{AUC}_{\mathrm{ROC}}$ metric $R(a, c)$ - that assesses the calibration skills of the LRM used for LS modelling - has also been established (2b in Fig. 1 and Section 5 (Rossi et al., 2010)), a proper objective function S that combines the aspect segmentation metric $(F(a, c))$ and the $\operatorname{AUC}_{\mathrm{ROC}}$ calibration metric $(R(a, c))$ is established. Maximization of $S(a, c)$ as a function of the a (the minimum surface area of the slope-unit) and c (the slope-unit circular variance) modelling parameters allows to single out the optimal SU terrain subdivision for LS modelling in the given study area.

The reason for proposing a combination of the aspect segmentation and the $\mathrm{AUC}_{\mathrm{ROC}}$ metrics in the search for an optimal terrain subdivision for LS modelling is the following. The single segmentation metric $F(a, c)$ is a measure of the degree of fulfillment of inter-unit homogeneity and intra-unit heterogeneity for a SU delineation obtained with given (a, c) values. As such, $F(a, c)$ is related only to the geometrical delineation of the SU , and does not consider the subsequent application of a LS model, the presence/absence of landslides, or any quantity other than terrain aspect. Thus, if only the $F(a, c)$ metric is used to select a particular set of modelling parameters, the resulting "optimal" (best) set of SU has the only meaning of "best partition of the territory in terms of aspect segmentation". Similarly, the $R(a, c)$ metric considers solely the classification results of the LS model, and not the geometry of the single SU , some of which may be inadequate (e.g., too large, too irregular, too small) for $F(a, c)$ and $R(a, c)$ metrics to obtain an "optimal" (best) set of SU that simultaneously satisfies morphological homogeneity requirements and provides a set of SU best suited for LS prediction.

7 Test area

We tested our proposed modelling framework for the delineation of SU, and for the selection of the optimal modelling param-
ranges from 175 m to 1571 m , and terrain gradient from almost zero along the river plains, to more than 70° in the mountains and the steepest hills. Four lithological complexes, or groups of rock units (Cardinali et al., 2001), crop out in the area, including: (i) sedimentary rocks pertaining to the Umbria-Marche sequence, Lias to lower Miocene in age, (ii) rocks pertaining to the Umbria turbidites sequence, Miocene in age, (iii) continental, post-orogenic deposits, Pliocene to Pleistocene in age, and (iv) alluvial deposits, recent in age. Each lithological complex comprises different sedimentary rock types varying in strength from hard to weak and soft rocks. Hard rocks are massive limestone, cherty limestone, sandstone, travertine, and conglomerate. Weak rocks are marl, rock-shale, sand, silty clay, and stiff over-consolidated clay. Soft rocks are clay, silty clay, and shale. Rocks are mostly layered and locally structurally complex. Soils in the area reflect the lithological types, and range in thickness from less than 20 cm where limestone and sandstone crop out along steep slopes, to more than 1.5 m in karst depressions and in large open valleys.

To model LS, we use a digital representation of the terrain elevation, an inventory of known landslides, and relevant geoenvironmental information. We use a DEM with a ground resolution of $25 \mathrm{~m} \times 25 \mathrm{~m}$ obtained through linear interpolation of elevation data along contour lines shown on 1:25,000 topographic base maps (Cardinali et al., 2001) (Fig. 4A). The landslide

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
inventory (Fig. 4B) was obtained from the visual interpretation of multiple sets of aerial photographs flown between 1954 and 1977, aided by field surveys, review of historical and bibliographical data, and geological, geomorphological and other available landslide maps (Cardinali et al., 2001; Galli et al., 2008; Guzzetti et al., 2008; Alvioli et al., 2014). To prepare the LS model we considered only the shallow slides, the deep-seated slides, and the earth flows. These landslides are (i) slow to very

8 Results

8.1 Slope-units delineation

In the study area, we ran the r.slopeunits software for 99 different combinations of user-defined input parameters, resulting in 99 different terrain subdivisions. In the iterative procedure (Fig. 2), the initial FA threshold (t) area and the reduction factor (r) control the numerical convergence, and do not have an explicit geomorphological meaning. On the other hand, the minimum area (a) and the circular variance (c) determine the size and control the aspect of the SU. For the analysis, we selected a large value for the FA area $\left(t=5 \times 10^{6} \mathrm{~m}^{2}\right)$ keeping it constant for all the different model runs. The large value was chosen to obtain large initial HB that could be further subdivided into smaller SU by the iterative procedure (see Section 4). The value

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
is also consistent with (i.e., substantially larger than) (i) the size of the average SU used to partition the same area in a different LS modelling effort (Cardinali et al., 2001, 2002), and (ii) the average area of the considered landslides (shallow slides, the deep-seated slides, and the earth flows) in the study area (Guzzetti et al., 2008). Selection of the reduction factor ($r=10$) was heuristic, and motivated by the fact that this figure provided stable results compared to those obtained using larger values. The two most relevant parameters, the minimum area a, and the circular variance c, were selected from broad ranges: $a=10,000$, $25,000,50,000,75,000,100,000,125,000,150,000,200,000$, and $300,000 \mathrm{~m}^{2}$, and $0.1<c<0.6$, at evenly spaced values with an increment of 0.05 . For all the r.slopeunits model runs, we used the same value for cleansize $=20,000 \mathrm{~m}^{2}$, to remove candidate SU with area $<20,000 \mathrm{~m}^{2}$ using the first (and simplest) of the three methods described in Section 3.2.

Fig. 6 shows nine of the 99 results of the terrain subdivisions obtained using different combinations of the a and c modelling parameters. The map in the upper left (lower right) corner shows the finest (coarsest) SU partitioning, determined using small (large) values of a and c. The map in the centre was obtained using intermediate values for the two user-defined modelling parameters. For a limited portion of the study area, Fig. 7 shows different partitioning results. In particular, Figs. 7A and 7B show the overlay of the three different partitions with the landslide inventory map (Fig. 4), using a 2-dimensional visualization and a shaded image relief of the terrain, whereas Figs. 7C, 7D and 7E show separately the same partitions using a 3-dimensional representation. Visual inspection of Figs. 7A, 7B and 7C reveals that the coarser subdivision ($c=0.60$ and $a=0.3 \mathrm{~km}^{2}$), shown in blue, defines large SU characterized by heterogeneous orientation (aspect) values. On the other hand, the finest SU subdivision (shown in green in Figs. 7A, 7B and 7E) obtained using $c=0.10$ and $a=0.01 \mathrm{~km}^{2}$, is too small to include completely many of the landslides (shown in yellow). The combination that uses intermediate values $c=0.35$ and $a=0.15$ km^{2} resulted in the SU subdivision shown in red in Figs. 7B and 7D.

Fig. 8 shows the effect of different combinations of a and c on the average SU size. The average area of the SU increases significantly with c (less homogeneous, more irregular slope), and it is less sensitive to the increment of a (Fig. 8A). The effect of c becomes predominant in Fig. 8B. The standard deviation of the area of the SU varies significantly with c, highlighting that larger values of c increase the average and the variability of the SU size (Figs. 8A and 8B, respectively).

8.2 Segmentation metric

For each of the 99 terrain subdivisions obtained using the procedure described above, we calculated the segmentation objective function value given by Eq. (3). The segmentation metric $F(a, c)$ (Fig. 9) is a measure of the performance of our SU delineation algorithm, and an assessment of how well the requirements of internal homogeneity/external heterogeneity are fulfilled by the procedure, as a function of a and $c(2 \mathrm{a}$ in Fig. 1, Section 4). Where the SU are relatively small, their degree of internal homogeneity is large, but the requested heterogeneity between adjacent units is not fulfilled, completely. Where the SU are large, the requested internal homogeneity is not fulfilled entirely, because in each SU the aspect variability is large. The analysis of the $F(a, c)$ values in Fig. 9 suggests that SU subdivisions obtained using c smaller than about 0.2 and a smaller than about $50,000 \mathrm{~m}^{2}$, or c larger than about 0.5 , should not be considered in the analysis, because they are too small or too large to satisfy the aspect variability requirement.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

8.3 Landslide susceptibility modelling

For each of the 99 SU delineations, we prepared a different LS zonation using a Logistic Regression Model (Section 6) adopting the modelling scheme described by Rossi et al. (2010). Fig. 10 shows the results obtained for nine (out of 99) combinations of the a and c parameters. For each of the 99 susceptibility assessments, we evaluated the fitting (calibration) performance of the models computing $\mathrm{AUC}_{\mathrm{ROC}}$ (Rossi et al., 2010), and Fig. 11 shows the obtained $\mathrm{AUC}_{\mathrm{ROC}}$ as a function of the a and c parameters (Section 5).

The larger values of $\mathrm{AUC}_{\mathrm{ROC}}$ were obtained for LS zonations based on SU partitions resulting from large values of c and a. Such combinations may result locally in SU with extremely large internal heterogeneity. Signatures of the heterogeneity within very large slope-units can be found both in the segmentation metric and in the LRM model results. In the segmentation metric case this is very straightforward since the values of $F(a, c)$, which is a direct measure of the slope aspect homogeneity within SU, clearly decrease with increasing values of a and c, as shown in Fig. 9. Very large SU , however, are not only heterogeneous in terms of terrain aspect, but also in terms of the morphometric and thematic variables used as input of the LRM. This is reflected in the number of input variables that significantly contribute to the susceptibility model results, as a function of a and c. We computed the number of statistically significant variables in each realization of the LRM (i.e., the variables with a p-value <0.05). Fig. 12 shows that the number of significant variables ranges from 5\% (of the 50 morphometric and thematic variables) for large SU, to 35% for small SU. From this analysis we observe that for very large slope units, only very few variables are effectively used by the LRM. A more detailed analysis reveals that, in our test case, lithological variables significantly control the results, whereas other local settings (e.g. terrain slope) are neglected. The relevant variables are typically the terrigenous sediments and carbonate lithological complexes, where landslides are expected and not expected, respectively. As a result, in the region of large (a, c) parameters, even if we obtain high values of $\mathrm{AUC}_{\text {ROC }}$, the LRM can be replaced by a simple heuristic analysis of the lithological map. The fine details of the remaining input variables are lost and a multivariate statistical approach is of little use. We clarify that to evaluate the model performance, any statistical metric based on the comparison of observed and predicted data (e.g. confusion matrices and derived indexes), would exhibit the same or similar trend as the $\mathrm{AUC}_{\mathrm{ROC}}$ as a function of the SU size.

8.4 Optimization of the SU partition for LS modelling

Values of $F(a, c)$ indicate that there are combinations of the c and a parameters that result in SU subdivisions that do not satisfy the user requirements in terms of SU internal homogeneity and external heterogeneity (Fig. 8) (Section 8.2). On the other hand, the $\mathrm{AUC}_{\text {ROC }}$ metric increases with the average size of the SU (Fig. 11) (Section 8.3). To select the optimal terrain partitioning for LS zonation in our study area, we exploit the objective function $S(a, c)$, which simultaneously quantifies (Section 6): (i) the SU internal homogeneity and external heterogeneity, and (ii) the (fitting) performance of the LS model (Fig. 13B). Maximization of $S(a, c)$ provides the best combination of the (a, c) modelling parameters for a terrain subdivision optimal for LS modelling, in our study area. In agreement with our initial aim, the subdivision satisfies the requirements of: (i) providing a consistent subdivision of the landscape into SU of variable size and shape, (ii) producing a terrain subdivision able to detect

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
the variability of terrain aspect, and (iii) and being best-suited for the production of a reliable LS model, and associated terrain zonation.

To combine the two functions $R(a, c)$ and $F(a, c)$ into a single objective function, we normalized them to $[0,1]$ as follows:
$R_{o}(a, c)=\frac{R(a, c)-R_{\min }(a, c)}{R_{\max }(a, c)-R_{\min }(a, c)}$
$5 \quad F_{o}(a, c)=\frac{F(a, c)-F_{\min }(a, c)}{F_{\max }(a, c)-F_{\min }(a, c)}$.
The functions $R_{o}(a, c)$ and $F_{o}(a, c)$, shown in Fig. 13A, are then be multiplied to obtain the final objective function $S(a, c)$,
$S(a, c)=R_{o}(a, c) F_{o}(a, c)$,
which embodies information on the quality of the terrain aspect map segmentation and on the performance of the LS model in a consistent, objective and reproducible way. The function $S(a, c)$ assumes values in the range $[0,1]$: the larger the value the better the SU partitioning in terms of (i) SU internal homogeneity and external heterogeneity, and (ii) suitability of the subdivision for LS zonation, in our study area. The function $S(a, c)$ (Fig. 13B), calculated in our test case for different combinations of the a and c modelling parameters, has a maximum value at $a=150,000 \mathrm{~m}^{2}$ and $c=0.35$. The set of SU that corresponds to the optimal combination of the modelling parameters can be singled out as our "optimal" (best) result.

9 Discussion and conclusions

 divide lines, well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, and in particular for landslide susceptibility (LS) modelling and zonation (Carrara et al., 1991, 1995; Guzzetti et al., 1999; Guzzetti, 2006). Despite the clear advantages of SU over competing mapping units for LS modelling (Guzzetti, 2006), inspection of the literature reveals that only a small proportion (8%) of the LS zonations prepared in the last three decades worldwide was performed using SU (Malamud et al., 2014). The limited use of SU for LS modelling and zonation is due - among other factors - to the unavailability of readily available, easy to use software for the accurate and automatic delineation of SU , and to the intrinsic difficulty in selecting a priori the appropriate size of the SU , for proper terrain partitioning in a given area.To contribute to fill this gap, we developed new software for the automatic delineation of SU in large and complex geographical areas based on terrain elevation data (i.e., a DEM) and a small number of user defined parameters. We further proposed and tested a procedure for the optimal selection of the user parameters through the production of a significant number (99) of realizations of the LS model. We tested the software and the optimization procedure in a $2,000 \mathrm{~km}^{2}$ area in Umbria, Central Italy. Results showed that new r.slopeunits software was capable of capturing the morphological variability of the landscape, and to partition the study area into SU subdivisions of different shapes and sizes well suited for LS modelling and zonation.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

Depending on the type of landslides, the scale of the available DEM, the morphological variability of the landscape, and the purpose of the zonation, the detail of the terrain subdivision may vary. A detailed terrain partitioning, with many small SU, is required to capture the complex morphology of badlands, or to model the susceptibility to small and very small landslides (i.e. soil slips). A coarse terrain subdivision is best suited for modelling the susceptibility of very old and very large, deep- seated, complex and compound landslides. Coarse subdivisions can also be used to model the susceptibility to channelled debris flows that travel long distances from the source areas to the depositional areas. Subdivisions of intermediate size may be required for medium to large slides and earth flows (Carrara et al., 1995). By tuning the set of user defined model parameters, r.slopeunits can prepare SU terrain subdivisions for LS modelling in different geomorphological settings.

We clarify that the subdivisions produced by r.slopeunits using different (a, c) parameters are nested i.e., the boundaries of a coarse resolution subdivision encompass the boundaries of intermediate and finer subdivisions (see C, D, E in Fig. 7). This is a significant operational advantage where landslides of different sizes and types coexist, posing different threats and requiring multiple and combined susceptibility assessments, each characterized by a different terrain subdivision (Carrara et al., 1995).

We expect that ther.slopeunits software will be used to prepare terrain subdivisions in different morphological settings, contributing to the preparation of reliable and robust LS models and associated zonations. We acknowledge that further work is required to investigate the optimization of SU partitions for different statistically-based tools used in the literature for LS modelling and zonation (e.g., discriminant analysis, neural network). Guzzetti et al. (2012) have argued that lack of standards hampers landslide studies. This is also the case for the production of landslide susceptibility models and associated maps. We expect that systematic use of the modelling framework proposed in this work (Fig. 1, Section 2) and of ther.slopeunits software for the objective selection of the user defined modelling parameters, will contribute to the production of more reliable landslide susceptibility models. Il will also facilitate the meaningful comparison of landslide susceptibility models produced $e . g .$, in the same area using different modelling tools, or in different and distant areas using the same or different modelling tools.

Finally, we argue that the proposed modelling framework and the r.slopeunits software are general and not site or process specific, and can be used to prepare terrain subdivisions for scopes different from landslide susceptibility mapping, including e.g., definition of rainfall thresholds for possible landslide initiation, distributed hydrological modelling, statisticallybased inundation mapping, and the detection and mapping of landslides and other instability processes from satellite imagery.

10 Appendix A2-Code Availability

The coder.slopeunits is free software under the GNU General Public License ($>=\mathrm{v} 2$). Details about the use and redistribution of the software can be found in the file https://grass.osgeo.org/home/copyright/ that comes with GRASS GIS. The software and a short user manual can be downloaded at http://geomorphology.irpi.cnr.it/tools/slope-units

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

11 Appendix A1 - Notation

In Table 1 we list the main variables and the acronyms used in the text.

Table 1. Main variables and acronyms used in the text.

Variable	Explanation	First introduced	Dimensions
a	minimum surface area for the SU	Section 3.1	m^{2}
c	minimum circular variance	Section 3.1	-
r	reduction factor	Section 3.1	-
t	flow accumulation threshold	Section 3.1	m^{2}
I	Autocorrelation index	Eq. (1)	-
V	Local aspect variance	Eq. (2)	-
$F(V, I)$	Aspect segmentation metric, also $F(a, c)$	Eq. (3)	-
$R(a, c)$	AUC Roc $^{\text {Roctric for LRM calibration }}$	Section 3.1	-
$S(a, c)$	Combined segmentation \& $\mathrm{AUC}_{\mathrm{ROC}}$ metric	Eq. (11)	-

Acronym	Explanation
AP	Alluvial Plain
AUC	Area Under the Curve
DEM	Digital Elevation Model
FA	Flow Accumulation
FPR	False Positive Rate
GIS	Geographical Information System
HB	Half Basin (left and right portion of a slope unit)
LRM	Logistic Regression Model
LS	Landslide Susceptibility
MFD	Multiple Flow Direction
ROC	Receiver Operating Characteristic
SFD	Single Flow Direction
SU	Slope Unit, a morphological terrain unit
	bounded by drainage and divide lines
TPR	True Positive Rate
TU	Terrain Unit, a subdivision of the terrain

Acknowledgements. Work supported by a grant of the Italian National Department of Civil Protection, and by a grant of the Regione dell'Umbria under contract POR-FESR (Repertorio Contratti n. 861, 22/3/2012). M. Alvioli was supported by a grant of the Regione Umbria,

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.
(c) (i)
under contract POR-FESR Umbria 2007-2013, asse ii, attività a1, azione 5, and by a grant of the DPC. F. Fiorucci was supported by a grant of the Regione Umbria, under contract POR-FESR 861, 2012. We thank A.C. Mondini (CNR IRPI) for useful discussions about segmentation algorithms.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

References

Alvioli, M., Guzzetti, F., and Rossi, M.: Scaling properties of rainfall-induced landslides predicted by a physically based model, Geomorphology, 213, 38-47, doi:10.1016/j.geomorph.2013.12.039, 2014.

Aplin, P. and Smith, G.: Advances in object-based image classification, in: Remote Sensing and Spatial Information Sciences XXXVII, vol. B7 of The International Archives of the Photogrammetry, pp. 725-728, Bejing, China, 2008.

Brabb, E. E.: Innovative approaches to landslide hazard mapping, in: Proceedings 4th International Symposium on Landslides (Toronto), vol. 1, pp. 307-324, 1984.

Budimir, M., Atkinson, P., and Lewis, H.: A systematic review of landslide probability mapping using logistic regression, Landslides, 12, 419-436, doi:10.1007/s10346-014-0550-5, 2015.
Cardinali, M., Antonini, G., Reichenbach, P., and Fausto, G.: Photo-geological and landslide inventory map for the Upper Tiber River basin CNR GNDCI - publication n. 2116, scale 1:100,000, http://geomorphology.irpi.cnr.it/publications/repository/public/maps/UTR-data.jpg/, 2001.

Cardinali, M., Carrara, A., Guzzetti, F., and Reichenbach, P.: Landslide hazard map for the Upper Tiber River basin CNR GNDCI n. 2634, Scale 1:1,200,000, http://geomorphology.irpi.cnr.it/publications/repository/public/maps/UTR-hazard.jpg/, 2002.

Carrara, A.: Drainage and divide networks derived from high-fidelity digital terrain models, in: Quantitative Analysis of Mineral and Energy Resources, edited by Chung, C., A.G., F., and Sinding-Larsen, R., vol. 223 of Mathematical and Physical Sciences, pp. 581-597, D. Reidel Publishing Company, 1988.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: GIS techniques and statistical models in evaluating landslide hazard, Earth Surface Processes and Landforms, 16, 427-445, doi:10.1002/esp.3290160505, 1991.
Carrara, A., Cardinali, M., Guzzetti, F., and Reichenbach, P.: GIS Technology in Mapping Landslide Hazard, in: Geographical Information Systems in Assessing Natural Hazards, edited by Carrara, A. and Guzzetti, F., vol. 5 of Advances in Natural and Technological Hazards Research, pp. 135-175, Springer Netherlands, doi:10.1007/978-94-015-8404-3_8, 1995.

Dragut, L. and Blaschke, T.: Automated classification of landform elements using object-based image analysis, Geomorphology, 81, 330344, doi:10.1016/j.geomorph.2006.04.013, 2006.

Dragut, L., Tiede, D., and Levick, S.: ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data, Int. J. Geogr. Inf. Sci., 24, 859-871, 2010.

Dragut, L., Csillik, O., Eisank, C., and Tiede, D.: Automated parameterisation for multi-scale image segmentation on multiple layers, ISPRS J. Photogramm. Remote Sens., 88, 119-127, doi:10.1016/j.isprsjprs.2013.11.018, 2014.

Erener, A. and Düzgün, S.: Landslide susceptibility assessment: what are the effects of mapping unis and mapping method?, Environ. Earth Sci., 66, 859-877, doi:10.1007/s12665-011-1297-0, 2012.

Espindola, G., Camara, G., Reis, I., Bins, L., and Monteiro, A.: Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation, Int. J. Remote Sens., 14, 3035-3040, doi:10.1080/01431160600617194, 2006.

Fall, M., Azzam, R., and Noubactep, C.: A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping, Eng. Geol., 82, 241-263, doi:10.1016/j.enggeo.2005.11.007, 2006.

Fawcett, T.: An introduction to ROC analysis, Pattern Recognition Letters, 27, 861 - 874, doi:http://dx.doi.org/10.1016/j.patrec.2005.10.010, 2006.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

Flanders, D., Hall-Beyer, M., and Pereverzoff, J.: Preliminary evaluation of eCognition object-oriented software for cut block delineation and feature extraction, Can. J. Remote Sens., 29, 441-452, doi:10.5589/m03-006, 2003.

Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., and Reichenbach, P.: Comparing landslide inventory maps, Geomorphology, 94, 268289, 2008.

5 Guzzetti, F.: Landslide Hazard and Risk Assessment. PhD Thesis, http://hss.ulb.uni-bonn.de/2006/0817/0817.htm, 2006.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181-216, doi:10.1016/S0169-555X(99)00078-1, 1999.

Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F.: Probabilistic landslide hazard assessment at the basin scale, Geomorphology, 72, 272-299, 2005.

Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.: Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166-184, doi:10.1016/j.geomorph.2006.04.007, 2006.

Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., and Rossi, M.: Distribution of landslides in the Upper Tiber River basin, central Italy, Geomorphology, 96, 105-122, 2008.

Guzzetti, F., Mondini, A., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an old problem, Earth-Science Reviews, 112, 42 - 66, doi:10.1016/j.earscirev.2012.02.001, 2012.

Huabin, W., Gangjun, L., Weiya, X., and Gonghui, W.: GIS-based landslide hazard assessment: an overview, Prog. Phys. Geog., 29, 548-567, doi:10.1191/0309133305pp462ra, 2005.

Komac, M.: A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia, Geomorphology, 74, 17-28, doi:10.1016/j.geomorph.2005.07.005, 2006.

Komac, M.: Regional landslide susceptibility model using the Monte Carlo approach - the case of Slovenia, Geol. Q., 56, 41-54, 2012.
Li, Y., Chen, G., Tang, C., Zhou, G., and Zheng, L.: Rainfall and earthquake-induced landslide susceptibility assessment using GIS and Artificial Neural Network, Nat. Hazards Earth Syst. Sci., 12, 2719-2729, doi:10.5194/nhess-12-2719-2012, 2012.

Malamud, B., Reichenbach, P., Rossi, M., and Mihir, M.: Report on standards for landslide susceptibility modelling and terrain zonations, LAMPRE FP7 Project deliverables, http://www.lampre-project.eu, 2014.
Mashimbye, Z., de Clerq, W., and Van Niekerk, A.: An evaluation of digital elevation models (DEMs) for delineating land components, Geoderma, 213, 312-319, doi:10.1016/j.geoderma.2013.08.023, 2014.

Metz, M., Mitasova, H., and Harmon, R. S.: Efficient extraction of drainage networks from massive, radar-based elevation models with least cost path search, Hydrolo. Earth Syst. Sci., 15, 667-678, doi:10.5194/hess-15-667-2011, 2011.

Neteler, M. and Mitasova, H.: Open Source GIS: A GRASS GIS Approach, Springer, New York, 2007.
Nichols, G.: Sedimentology and stratigraphy, John Wiley \& Sons, Chichester, West Sussex, UK, 2009.
Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S.: Landslide hazard assessment: recent trends and techniques, SpringerPlus, 2, 253, doi:10.1186/2193-1801-2-523, 2013.

Regione Umbria: Carte Tematiche, http://www.umbriageo.regione.umbria.it/pagine/carte-tematiche/ambnat/amnat2.9.htm, 1995-2015.
Rossi, M., Guzzetti, F., Reichenbach, P. Mondini, A., and Peruccacci, S.: Optimal landslide susceptibility zonation based on multiple forecasts, Geomorphology, 114, 129-142, doi:10.1016/j.geomorph.2009.06.020, 2010.

Saito, H., Nakayama, D., and Matsuyama, H.: Preliminary study on mountain slope partitioning addressing the hierarchy of slope unit using DEMs with different spatial resolution, in: Geomorphometry 2011, pp. 143-146, Redlands, USA, 2011.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016 Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

Santangelo, M., Marchesini, I., Bucci, F., Cardinali, M., Fiorucci, F., and Guzzetti, F.: An approach to reduce mapping errors in the production of landslide inventory maps, Natural Hazards and Earth System Sciences, 15, 2111-2126, doi:doi.org/10.5194/nhess-15-2111-2015, 2015.
Schaetzl, R., Enander, E., Luehmann, M., Lusch, D., Fish, C., Bigsby, M., Steigmeyer, M., Guasco, J., Forgacs, C., and Pollyea, A.: Mapping the physiography of Michigan with GIS, Phys. Geogr., 34, 2-39, doi:10.1080/02723646.2013.778531, 2013.

5 Sharma, R. and Mehta, B.: Macro-zonation of landslide susceptibility in Garamaura-Swarghat-Gambhar section of national highway 21, Bilaspur District, Himachal Pradesh (India), Nat. Hazards, 60, 671-688, doi:10.1007/s.11069-011-0041-0, 2012.

Zhao, M., Li, F., and Tang, G.: Optimal Scale Selection for DEM Based Slope Segmentation in the Loess Plateau, Int. J. Geosci., 3, 37-43, doi:10.4236/ijg.2012.31005, 2012.

Complex		Code
Carbonate	Massive Layers	CC1
	Thin Layers	CC2
	Marl, Calcareous Marl	CC3
Terrigenous	Massive Sandstone	CT1
	Variable SD/P fraction	CT21
		CT22
		CT23
	Marly, $\mathrm{SD} / \mathrm{P} \ll 1 \quad$ Stratified	CT31
Post-Orogenic	Conglomerate, Gravel, Pebble	CPO2
	Sand	CPO3
	Silt and Clay	CPO4
	Variable CO/S/G fraction	CPO24
Others	Olistostrome	OLI
Quaternary Deposit	Alluvial Deposit	A
	Debris Cone	QDF
	Red Soil in Karstic Landscape	TRDC
	Travertine	T

Table 2. Lithological codes used in Fig. 5. $\mathrm{SD}=$ sandstone, $\mathrm{P}=$ pelitic rock, $\mathrm{CO}=$ conglomerate, $\mathrm{S}=$ sand, $\mathrm{G}=$ clay (Regione Umbria).

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016 Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016

Figure 1. Logical framework for the proposed method for (1) the parametric delineation of slope-units (SU), (2a) the assessment of the quality of terrain aspect segmentation using of a proper segmentation objective function, (2b) the calculation and assessment of the quality of the landslide susceptibility (LS) modelling using a standard metric (the Area Under the Curve of Receiver Operating Characteristic $A U C_{\mathrm{ROC}}$ metric), and (3) the definition and maximization of a combined objective function for (4) the determination of optimal parameters for the delineations of slope-units (SU) beste suited for landslide susceptibility (LS) modelling and zonation.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016 Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

Figure 2. Flowchart for the r. slopeunits software. (A) Input data and parameters. AP, map showing plain areas to be excluded from the processing; DEM, digital elevation model; t, initial FA threshold area; a minimum area; c, circular variance; r, reduction factor; maxarea, maximum SU area; cleansize, size of candidate SU to be removed; see text for detailed explanation. (B) r.watershed processing in GRASS GIS (Neteler and Mitasova, 2007). (C) Tests if the produced HB are in a plain area. (D) The average area of new HB child in each $\mathrm{HB}_{\text {parent }}$ is checked against a. (E) $\mathrm{HB}_{\text {child }}$ are individually checked against a and c requirements. (F) The process proceeds to iteration $i+1$ for those $\mathrm{HB}_{\text {child }}$ that still do not meet the requirements, with an updated $t_{i+1}=t_{i}-t_{i} / r$ FA threshold. (G) Small polygons are removed from the candidate SU set.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016

Figure 3. Graphical representation of the circular variance of terrain aspect, $1-|\boldsymbol{R}| / N_{v}$. Two groups of unit vectors are shown. The unit vectors represent the local direction of terrain aspect for each grid-cell, resulting in circular variance (A) of 0.1 and (B) of 0.6. Unit vectors are perpendicular to the local topography, represented by the grid-cell.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

Figure 4. (A) Shaded relief image of the study area located on the Upper Tiber River basin, Umbria, Central Italy. Shades of green to brown show increasing elevation. Inset shows location of the study area in Italy. (B) Landslide inventory map (Cardinali et al., 2001). Inset shows the detail of the landslide mapping. Landslides (shown in red) were used to prepare the landslide susceptibility zonations shown in Fig. 10. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

Figure 5. (A) Lithological map of Upper Tiber River basin, Umbria, Central Italy (Regione Umbria). Details of the lithological types are given in Table 2. (B) Land use map of the study area. Legend: AE: urban area, AN: bare soil, AQ: water, BO: forest, CA: orchard, CO: olive grove, CV: vineyard, LP: poplar trees, NN/NX: unclassified, PA: meadow/pasture, SA: treed seminative, SS: simple seminative. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016 Manuscript under review for journal Geosci. Model Dev.

Figure 6. Nine (out of 99) slope-units (SU) terrain subdivisions for a portion of the study area. The SU were obtained changing the a and c parameters used by the r.slopeunit software. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Geoscientific
(c) Author(s) 2016. CC-BY 3.0 License.

Figure 7. Example of subdivisions into slope-units (SU) for a portion of the study area. Legend: Blue, red, and green lines show boundaries of SU of increasing density and corresponding decreasing average size. Yellow areas are landslides. The five maps show the same area in plan view (A) and in perspective view (B, C, D, and E).

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(C) Author(s) 2016. CC-BY 3.0 License.

Figure 8. (A) Average and (B) standard deviation of the size of the slope-units (SU), for different combinations of a and c parameters. The minimum size of the SU is fixed by the a parameter, and the maximum size of the SU is independent of a.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

(c) (i)

Figure 9. Segmentation objective function values (Eq. (3)) calculated for 99 slope-units (SU) partitions obtained using different combinations of the a and c parameters.

Figure 10. Nine (out of 99) landslide susceptibility (LS) maps obtained with different slope-units (SU) partitions resulting from different combinations of the a and c parameters. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016

Discussions
(C) Author(s) 2016. CC-BY 3.0 License.

Figure 11. Values of the Area Under the ROC Curve ($\mathrm{AUC}_{\mathrm{ROC}}$) calculated for landslide susceptibility (LS) maps estimated using slope-units (SU) partitions derived for different combination of the a and c user-defined modelling parameters.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(C) Author(s) 2016. CC-BY 3.0 License.

(c) (8)

Figure 12. Percentage of relevant variables in the Logistic Regression Model (LRM) used in this work to prepare the landslide susceptibility (LS) maps as a function of the a and c user-defined modelling parameters. Combination of a and c are the same used to prepare Fig. 11. Note that the direction of the axes are reversed with respect to Fig. 11.

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
(c) Author(s) 2016. CC-BY 3.0 License.

(c) ${ }^{(i)}$

Figure 13. (A) $R_{o}(a, c)$ (blue) and $F_{o}(a, c)$ (red) functions, defined by Eqs. (9), (10). (B) $S_{o}(a, c)$ function defined by Eq. (11). The functions were interpolated on a denser mesh for improved visual representation.

