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Abstract. Automatic subdivision of landscapes into terrain units remains a challenge. Slope-units are terrain units bounded

by drainage and divide lines, but their use in hydrological and geomorphological studies is limited because of the lack of

reliable software for their automatic delineation. We present the r.slopeunits software for the automatic delineation of

slope-units, given a digital elevation model and a few input parameters. We further propose an approach for the selection

of optimal parameters controlling the terrain subdivision for landslide susceptibility modelling. We tested the software and5

the optimization approach in Central Italy, where terrain, landslide, and geo-environmental information was available. The

software was capable of capturing the variability of the landscape, and to partition the study area into slope-units suited for

landslide susceptibility modelling and zonation. We expect r.slopeunits to be used in different physiographical settings

for the production of reliable and reproducible landslide susceptibility zonations.

1 Introduction10

The automatic subdivision of large and complex geographical areas, or even entire landscapes, into reproducible, geomorpho-

logically coherent terrain units remains a conceptual problem and an operational challenge. Terrain units (TU) are subdivisions

of the terrain that maximize the within-unit (internal) homogeneity and the between-unit (external) heterogeneity across dis-

tinct physical or geographical boundaries (Guzzetti et al., 1999; Guzzetti, 2006; Komac, 2006; Saito et al., 2011; Sharma and

Mehta, 2012; Fall et al., 2006; Li et al., 2012; Erener and Düzgün, 2012; Komac, 2012; Schaetzl et al., 2013; Mashimbye15

et al., 2014). A Slope-unit (SU) is a type of morphological TU bounded by drainage and divide lines (Carrara, 1988; Carrara

et al., 1991, 1995; Guzzetti et al., 1999), and corresponds to what a geomorphologist or an hydrologist would recognize as a

single slope, a combination of adjacent slopes, or a small catchment. This makes SU easily recognizable in the field, and in

topographic base maps. Compared to other terrain subdivisions, including grid-cells or unique-conditions units (Guzzetti et al.,

1999; Guzzetti, 2006), SU are related to the hydrological and geomorphological conditions and processes that shape natural20

landscapes. For this reason, SU are well suited for hydrological and geomorphological studies, and for landslide susceptibility

(LS) modelling and zonation (Carrara et al., 1991, 1995; Guzzetti et al., 1999; Guzzetti, 2006).

SU can be drawn manually from topographic maps of adequate scale and quality (Carrara, 1988). However, the manual

delineation of SU is time consuming and error prone, limiting the applicability to very small areas. Manual delineation of
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SU is also intrinsically subjective. This reduces the reproducibility – and hence the usefulness – of the terrain subdivision.

Alternatively, SU can be delineated automatically using specialized software. The latter exploits digital representations of the

terrain, typically in the form of a Digital Elevation Model (DEM) (Carrara, 1988), or adopts image segmentation approaches

(Flanders et al., 2003; Dragut and Blaschke, 2006; Aplin and Smith, 2008; Zhao et al., 2012). In both cases, the result is a

geomorphological subdivision of the terrain into mapping units bounded by drainage and divide lines, which can be represented5

by polygons (in vector format) or groups of grid-cells (in raster format).

Large and complex geographical areas or landscapes can be partitioned by different SU subdivisions. Unique (i.e., "uni-

versal") subdivisions do not exist, and optimal (best) terrain subdivisions depend on multiple factors, including the size and

complexity of the study area, the quality and resolution of the available terrain elevation data, and – most importantly – the

purpose of the terrain subdivision (e.g., geomorphological or hydrological modelling, landslide detection from remote-sensing10

images, landslide susceptibility, hazard or risk modelling). An open problem is that an optimal SU subdivision for LS mod-

elling cannot be decided unequivocally, a priori, or in an objective way, and the quality and usefulness of a LS zonation depends

on the SU subdivision (Carrara et al., 1995).

In this work, we propose an innovative modelling framework to determine an optimal terrain subdivision based on SU best

suited for LS modelling. For the purpose, we also present the new r.slopeunits software for the automatic delineation15

of SU, and we propose a method to optimize the terrain subdivision in SU performed by the software. The r.slopeunits

software is written in Python for the GRASS GIS (Neteler and Mitasova, 2007), and automates the delineation of SU, given

a DEM and a set of user-defined input parameters. We tested the r.slopeunits software and the proposed optimization

procedure for LS modelling in a large area in Central Italy, where sufficient landslide and thematic information was available

to us (Cardinali et al., 2001, 2002). To model LS, we considered slow to very slow moving shallow slides, deep-seated slides,20

and earth flows, and we excluded rapid to fast-moving landslides, including debris flows and rock falls. The r.slopeunits

software performs the delineation of the SU, and does not perform the LS modelling. For the later, we exploit specific modelling

software (Rossi et al., 2010).

The paper is organized as follows. Fist, we present the proposed approach for the delineation of an optimal terrain subdivision

into SU best suited for LS modelling, based on an optimization method (Section 2). Next (Section 3), we present the method25

for the automatic delineation of SU, which we have implemented in the r.slopeunits software for the GRASS GIS, and

(Section 4) we describe a segmentation metric useful for the evaluation of the SU internal homogeneity. Next, we introduce

landslide susceptibility modelling (Section 5) and our optimization approach to the SU partitioning (Section 6). This is followed

(Section 7) by a description of the study area, in Central Italy, and of the data used for LS modelling. In Section 8 we discuss the

results obtained in our study area, in Central Italy, and we conclude (Section 9) summarizing the lessons learnt, and outlining30

possible uses of the r.slopeunits software and of the optimization procedure.
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2 Modelling framework

We propose a new modelling framework for the parametric delineation of slope-units (SU) and their optimization, as a function

of a few input parameters, for the specific purpose of determining landslide susceptibility (LS) adopting statistically-based

classification methods (Guzzetti et al., 1999, 2005, 2006; Guzzetti, 2006; Rossi et al., 2010). The framework is exemplified in

Fig. 1, and consists of the following steps:5

1 First, the r.slopeunits SU delineation software – described in Section 3, and whose flowchart is shown in Fig. 2

– is run multiple times with different combinations of the input modelling parameters. Each software run results in a

different subdivision of the landscape into a different set of SU. In each run, the number and size of the SU depend on

the input modelling parameters.

2a Second, the internal homogeneity and external inhomogeneity of each SU subdivision – required by any meaningful10

terrain subdivision – are defined in terms of terrain aspect, measured by the circular variance of the unit vectors perpen-

dicular to the local topography represented by all grid cells in a slope-unit. For each set of SU obtained in step 1 using

different input parameters, the quality of the aspect segmentation is evaluated adopting a general-purpose segmentation

objective function, presented in Section 4.

2b At the same time, for each set of SU obtained in step 1, a LS model is calibrated adopting a Logistic Regression Model15

(LRM) for SU classification (Section 5). In the LRM, each SU is classified as stable (i.e., free of landslides) or unstable

(i.e., having landslides) depending on a (in our case linear) combination of the local terrain conditions (i.e., the geo-

environmental variables). The performance of the model calibration is evaluated using the Area Under the Curve (AUC)

of Receiver Operating Characteristic (ROC), referred to as AUCROC metric, a standard and objective metric commonly

adopted in the literature to evaluate the performance of LS models (Rossi et al., 2010).20

3 Lastly, an overall (combined) objective function is defined by properly combining the segmentation (step 2a) and the

AUCROC (step 2b) objective functions, as described in Section 6. Maximization of this quantity allows to single out the

optimal set of SU (i.e., the optimal terrain subdivision) that, simultaneously, (i) provides a good aspect segmentation,

and (ii) results in an effective calibration of the LS model.

4 Maximization of the combined objective function allows selecting objectively the optimal combination of the input25

terrain modelling parameters best suited for LS modelling (step 4 in Fig. 1) and the corresponding SU subdivision.

In summary, the proposed modelling framework relies on an optimization procedure that maximizes a proper, specific func-

tion that contains information on (i) the morphology of the study area, represented by the aspect segmentation metric (step

2a), and on (ii) the specific landslide processes under investigation (in our case slow to very slow moving shallow slides,

deep-seated slides, and earth flows), represented by the LS model performance and the associated AUCROC metric (step 2b).30

The optimization approach removes subjectivity from the SU delineation algorithm, and produces a result that is objective and
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completely reproducible. This is a significant advantage over manual methods (Carrara, 1988), or specialized software that

needs multiple parameters and specific calibration procedures.

3 Automatic delineation of slope-units

Automatic delineation of SU can be performed adopting two strategies. The first strategy defines a large number of small

homogeneous areas, and enlarges or aggregates them progressively, maximizing the aspect homogeneity of the SU (Zhao5

et al., 2012). Following this approach, the size of the initial polygons representing the small homogeneous areas is significantly

smaller than the size of the desired (final) SU, which results from the aggregation of multiple areas performed maximizing an

objective function (Espindola et al., 2006). The second strategy defines an initial small number of large or very large areas,

and reduces progressively their size until a satisfactory result is obtained (Carrara, 1988; Carrara et al., 1991, 1995). In the

second strategy, the study area is subdivided into large sub-catchments, which can be further subdivided into left and right10

sides (looking downstream with respect to the main drainage), with the resulting two sides named half-basins (HB). The size

of the initial HB is much larger than the desired size for the SU.

For both strategies, the final subdivision of the landscape into SU does not maintain memory of the terrain partitioning

represented by the initial areas or HB. In both strategies, deciding when to stop the aggregation or the partitioning to obtain a

terrain subdivision suitable for a specific use (in our case LS modelling) is critical. Both strategies are subject to the selection15

of user-defined modelling parameters, which introduce subjectivity and reduce the reproducibility of the results. These are

conceptual and operational problems that hamper the design and the implementation of an automatic procedure for the effective

delineation of terrain subdivisions based on SU (Carrara et al., 1995; Espindola et al., 2006; Dragut et al., 2010, 2014).

3.1 Slope-unit delineation algorithm

For the delineation of the SU, we adopt the second strategy outlined above i.e., we start from a relatively small number of large20

HB, and we gradually reduce their size by subdividing the HB into smaller TU. Hydrological conditions and terrain aspect

requirements control the subdivision of the large HB into smaller TU. The approach is adaptive, and results in a geomorpho-

logical subdivision of the terrain based on SU of different shapes and sizes that capture the real ("natural") subdivisions of the

landscape.

We implemented the approach to the delineation of SU in a specific algorithm, coded in the r.slopeunits software25

(Fig. 2). The algorithm (and the software) uses the hydrological module r.watershed (Metz et al., 2011) available in the

GRASS GIS. Using a DEM to represent terrain morphology, r.watershed produces a map of HB adopting an advanced

flow accumulation (FA) area analysis. Each grid-cell in the DEM is attributed the total contributing area FA, based on the

number of cells that drain into it. The FA values are low along the divides and increase downstream along the drainage

lines. This information is used to single out streams and divides i.e., the main elements bounding a SU (Carrara, 1988).30

The r.watershed module can use single (Single Flow Direction, SFD) or multiple (Multiple Flow Direction, MFD) flow

direction strategies. In the SFD strategy, water is routed to the single neighbouring cell with the lowest elevation, and in the
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MFD strategy water is distributed to all the cells lower in elevation, proportionally to the terrain slope in each direction. The

r.slopeunits software adopts the MFD strategy to distribute water to the neighbouring cells.

The r.slopeunits software requires a DEM, demmap, accepts an optional layer showing alluvial plains (AP), plainsmap,

and the following user-defined numerical parameters (A in Fig. 2): (i) the flow accumulation area (FA) threshold, thresh,

(ii) the minimum surface area for the SU, areamin (in square meters), (iii) the minimum circular variance (Nichols, 2009)5

of terrain aspect within a slope-unit, cvmin, (iv) a reduction factor, rf, (v) the maximum surface area for the SU, maxarea

(in square meters, optional), and (vi) a threshold value for the cleaning procedures, cleansize (in square meters, optional;

see Section 3.2). For simplicity, in the following we refer to the numerical values of thresh, areamin, cvmin and rf as t,

a, c and r, respectively.

The software adopts an iterative approach to partition a landscape into SU. In the first iteration, r.watershed uses the10

threshold t controlling the partitioning into HB. The parameter t has to be smaller than the maximum surface accumulation area

(FA) for the study area to allow for the delineation of at least two HB large enough to be further subdivided. Grid-cells with

FA > t are recognized as drainage lines (i.e., streams), and used to delineate the river network by r.watershed, grouping

all grid-cells in the DEM that drain into a given stream segment. These cells collectively represent the catchment drained by

the stream segment, which can be further subdivided into left and right HB (B in Fig. 2). A low value of the contributing (flow15

accumulation, FA) area t results in a dense hydrological network draining a large number of small HB, and a large value of t

results in a reduced number of streams draining a smaller number of relatively large HB.

At each iteration, where a GIS layer showing alluvial plains (AP) is available, r.slopeunits identifies the grid-cells in

the AP and excludes them from the analysis (C in Fig. 2). When the SU are exploited for the analysis of the processes causing

slope instability, the exclusion is justified by the empirical observation that landslides do not occur in plain areas. The value20

of the areamin parameter a, defines the smallest possible (planimetric) area for a SU. The circular variance is defined as

1− |R|/Nv , in the range between 0 and 1, where Nv is the number of grid-cells in each HB and |R| is the magnitude of the

vector R that results from the sum of all unit vectors describing the orientation of each grid-cell. As an example, Fig. 3A

shows that a group of unit vectors dispersed 23 degrees apart, on average, is characterized by a circular variance of 0.1, and

Fig. 3B shows that a group of unit vectors dispersed 62 degrees apart, on average, is characterized by a circular variance of 0.6.25

Thus, a value of 0.1 of the circular variance represents grid-cells facing all nearly in the same direction, whereas a value of 0.6

represents more dispersed grid-cells. In the algorithm, the circular variance is controlled by the value of the cvmin parameter

c, affecting the homogeneity of terrain aspect in the HB. Small values of c result in more uniform HB, and large values of c in

less uniform HB, in terms of terrain aspect.

At each iteration, r.watershed splits each existing parent half-basin, HBparent (D in Fig. 2) into nested child half-basins,30

HBchild. The average area of the HBchild defined for each HBparent is checked against a. When the average area is smaller

than a, the subdivision is rejected and the HBparent is selected as a candidate SU. When the average area is larger than a,

the procedure keeps the HBchild for the next step of the analysis. The rejection procedure prevents very small HB from being

selected as candidate SU.
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The next step of the procedure consists in comparing the size and circular variance of each HBchild with the user-defined

values a and c. Where the circular variance is smaller than c, or the size is smaller than a, the HBchild is taken as a candidate SU

(E in Fig. 2). If the user defines the optional input parameter maxarea, the control on the circular variance is not performed

for the HBchild having a size larger than maxarea. This imposes a constraint on the maximum size of the candidate SU

(not shown in E in Fig. 2). The remaining HBchild are fed to the next iteration of r.watershed, which is initialized using a5

smaller value of t. At the i-th iteration, the value of t depends on the value of the reduction factor r, according to ti+1 = ti−ti/r
(F in Fig. 2). The decrease of ti is faster for small values of r ≥ 2. We checked empirically that values of r > 10 lead to visually

better results, at least in our study area. This is due to the fact that a slow decrease of ti allows for a better (finer) control on the

subdivision of the parent half-basin, HBparent. On the other hand, a fast decrease obtained with r = 2 prevents the algorithm

from checking if intermediate values of ti produce candidate SU. Thus, a slow decrease in ti results in a larger number of10

iterations, which produce better results at the expenses of a longer computing time required to complete the iterations.

At each iteration the HBchild are processed again by r.watershed as HBparent. The iterative procedure ends when the

entire study area is subdivided into candidate SU that match the user requirements, in terms of minimum area (a) and circular

variance (c). In the resulting map, the size and shape of the candidate SU can be determined by the constraint of minimum

surface area, or by the constraint of the minimum circular variance of the terrain aspect. The final terrain subdivision contains15

candidate SU whose minimum size approximates a.

The final SU partitioning is obtained after an additional (cleaning) step intended to identify and process candidate SU

exhibiting unrealistic or unacceptable size or shape (G in Fig. 2). This is discussed in the next Section.

3.2 Slope-units cleaning procedure

The r.slopeunits software may produce locally unrealistic candidate SU, which are too small, too large, or odd shaped. As20

an example, in large open valleys where terrain is flat or multiple channels join in a small area, unrealistically small subdivisions

can be produced. Another example is represented by unrealistically elongated or large candidate SU found along regular and

planar slopes. These terrain subdivisions, although legitimate from the algorithm hydrological perspective, are problematic for

practical applications and should be revised and removed, eventually. Very small candidate SU consisting of a few grid-cells

are often the result of artifacts (errors) in the DEM. These candidate SU should also be removed. To remove candidate SU with25

unrealistic or unwanted sizes (G in Fig. 2), we have implemented three distinct software tools based on three different methods.

The three methods require the user to set the cleansize parameter that imposes a strict constraint on the minimum possible

size (planimetric area) for a slope-unit.

The first method simply removes all candidate SU smaller than cleansize. The adjacent candidate SU are enlarged to

fill the area left by the removed units, using the r.grow GRASS GIS module. The second method, in addition to removing30

all candidate SU smaller than cleansize, it removes odd-shaped polygons from the set of the candidate SU. Enabled via

the -m flag in combination with cleansize, the second method removes markedly elongated candidate SU, with a width

smaller than two grid-cells. The third method merges small candidate SU with neighbouring ones based on the average terrain

aspect. Enabled via the -n flag in combination with cleansize, the third method calculates the average terrain aspect of all
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the grid-cells in each small candidate SU. The average aspects of the neighboring SU are compared, and the two adjacent units

exhibiting the smallest difference in average terrain aspect are merged, provided that the SU that is removed shares a significant

part of its boundary with the neighboring unit. The final result is a terrain subdivision in which the vast majority of the SU has

an area larger than cleansize. A drawback of the third method is that it is significantly more computer intensive than the

other two methods, requiring longer processing times.5

4 Segmentation metric

To evaluate the terrain partitioning into SU we use a simple metric originally proposed for the evaluation of the quality of a

segmentation result (Espindola et al., 2006). In digital image processing, segmentation consists in the process of partitioning

an image into sets of pixels, such that pixels within the same set share certain common characteristics. Here, we consider the

terrain aspect grid map as an image to be segmented, and we assume that the segmentation metric proposed by Espindola10

et al. (2006) is appropriate to evaluate the terrain partition into SU. We base the assumption on the observation that the metric

makes a straightforward evaluation of the internal homogeneity of the SU using the local aspect variance V , and the external

heterogeneity of the SU using the autocorrelation index, I . The two quantities are defined as follows:

V =
∑

n sn cn∑
n sn

, (1)

and15

I =
N
∑

n,l wnl (αn − α)(αl − α)(∑
n (αn − α)2

) (∑
n,l wnl

) , (2)

where n labels all the N SU in a given partition, sn is the surface area of the n-th SU, cn is the circular variance of the aspect

in the n-th SU, αn is the average aspect of the n-th SU, α is the average aspect of the entire terrain aspect map, and wnl is an

indicator for spatial proximity, equal to unity if SU n and l are adjacent, zero otherwise. The local variance V , defined in Eq.

(1), assigns more importance to large SU, avoiding numerical instabilities produced by small SU. The autocorrelation index I20

of Eq. (2) has minima for partitions that exhibit well-defined boundaries between different SU.

The optimal selection of the input parameters is the one that combines small V and small I . This is quantified by the

following objective function (Espindola et al., 2006):

F (V,I) =
Vmax − V

Vmax − Vmin
+

Imax − I
Imax − Imin

, (3)

where Vmin(max) and Imin(max) are the minimum (maximum) values of the quantities in Eqs. (1) and (2) as a function of the25

input parameters. To calculate I , we rewrite Eq. (2) to make it consistent with the terrain aspect map. The aspect map contains

values in degrees, and the average values and products cannot be taken straightforwardly, and the following definitions have to

be considered. The average values of the angles is a vectorial sum of unit vectors, so that

ᾱ = Arctan

(∑
j sinαj∑
j cosαj

)
, (4)

7

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



where the index j runs over all the grid-cells in the terrain aspect map. A similar definition holds for αi, the average aspect

inside the i-th slope-unit, if the sum in Eq. (4) is limited to the grid-cells belonging to the i-th SU. The difference (αi − ᾱ)

should also be intended vectorially, as follows:

αi − ᾱ = Arctan

(
sinαi − sin ᾱ
cosαi − cos ᾱ

)
. (5)

Lastly, the product at the numerator of Eq. (2) is taken as the scalar product of the vectors (αi − ᾱ) and (αj − ᾱ), as follows:5

(αi − ᾱ) · (αj − ᾱ) = cosθi cosθj + sinθi sinθj , (6)

where

θi = Arctan

(
sinαi − sin ᾱ
cosαi − cos ᾱ

)
, (7)

θj = Arctan

(
sinαj − sin ᾱ
cosαj − cos ᾱ

)
. (8)

Care must be taken in expressing angles and arcs consistently in degrees, or radians.10

The segmentation metric F (V,I) is a measure of the degree of fulfillment of the SU internal homogeneity requirement, and

it is related only to the SU geometrical and morphological delineation. The metric can be used to define the “optimal” (best)

partition of the territory in terms of aspect segmentation, by maximization of F (V,I) = F (V (a,c), I(a,c)) as a function of the

a and c user-defined modelling parameters.

5 Landslide susceptibility modelling15

Landslide susceptibility (LS) is the likelihood of landslide occurrence in an area, given the local terrain conditions, including

topography, morphology, hydrology, lithology, and land use (Brabb, 1984; Guzzetti et al., 1999; Guzzetti, 2006). Various types

of LS modelling approaches are available in the literature. The approaches differ – among other things – on the type of the TU

used to partition the landscape, and to ascertain LS (Guzzetti et al., 1999; Huabin et al., 2005; Guzzetti, 2006; Pardeshi et al.,

2013). Among the many available types of TU (Guzzetti, 2006), SU have proved to be effective terrain subdivisions for LS20

modelling.

In this work, we prepare LS models adopting a single multivariate statistical classification model. For the purpose, we use a

Logistic Regression Model (LRM) to quantify the relationship between dependent (landslide presence/absence) and indepen-

dent (geo-environmental) variables. We use the presence/absence of landslides in each SU as the grouping (i.e., dependent)

variable. Adopting a consolidated approach in our study area (Carrara et al., 1991, 1995; Guzzetti et al., 1999), SU with 2%25

or more of their area occupied by landslides are considered unstable (having landslides), and SU with less than 2% of the area

occupied by landslides are considered stable (free of landslides). The 2% threshold value depends on the accuracy of a typical

landslide inventory map (Carrara et al., 1991, 1995; Guzzetti et al., 1999; Santangelo et al., 2015). We acknowledge that the

selection of the 2% threshold may influence the selection of the appropriate SU subdivision, and may affect the results of the LS

zonation. Examination of different thresholds is not investigated in the present work, because it is not an input parameter of the30
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r.slopeunits software, and does not change the logic of the approach or the rationale behind our optimization procedure.

Users of the r.slopeunits software may select a different value for the landslide presence/absence threshold in the LRM

(or any other classification model, where considered more appropriate, in different study areas, and with different input data.

Numerical (i.e., terrain elevation, slope, curvature, and other variables derived from the DEM), and categorical (i.e., lithology

and land use) variables are used as explanatory (i.e., independent) variables in the LS modelling. Each SU is characterized by5

(i) statistics calculated for all the numerical variables, and (ii) percentages of all classes for the categorical variables.

The LS evaluation is repeated many times using different SU terrain subdivisions obtained changing the r.slopeunits

(a, c) modelling parameters, and cleaned from small areas using the first (and simplest) method described in Section 3.2. We

evaluate the performance skills of the different LS models calculating the AUCROC (Rossi et al., 2010). ROC curves show the

performance of a binary classifier system when different discrimination probability thresholds are chosen (Fawcett, 2006). A10

ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) for the different thresholds. The area

under the ROC curve, AUCROC, ranging from 0 to 1, is used to measure the performance of a model classifier that in our case

corresponds to the LS model.

Hereafter, we quantify the AUCROC metric with the R(a,c) function, for each value of the a (surface area) and c (circular

variance) input parameters of the r.slopeunits software. We stress that we use the AUCROC metric to evaluate the fitting15

performance of the LS model i.e., to evaluate the ability of the LS model to fit the same landslide set used to construct the LS

model (the landslide training set), and not an independent landslide validation set (Guzzetti et al., 2006; Rossi et al., 2010).

This is done purposely, because the scope of the procedure is not to evaluate the performance of the LS classification but to help

determining an optimal terrain subdivision for LS modeling, and thus before any LS model is available for proper validation.

When an optimal SU subdivision is obtained (see Section 6), and a corresponding LS model is prepared, the prediction skills20

of the model can be evaluated using independent landslide information, where this is available (Guzzetti et al., 2006; Rossi

et al., 2010).

In addition to the AUCROC, which is a direct measure of the fitting/prediction performance of a binary classifier, the per-

formance of the LRM model can be analysed in terms of how the different input variables (both numerical and categorical)

contribute to the final result (Budimir et al., 2015). In the model, a p-value can be associated to each variable, and used to25

establish the significance of the variable in the LRM. The fraction of significant variables used by the LRM can be used to

qualitatively understand the behaviour of the classification model as a function of the r.slopeunits software input param-

eters or, in turn, as a function of the average size of the SU. We expect the LRM to use the input data less efficiently when the

average SU size grows, resulting in a smaller number of significant input variables.

6 Optimization of SU partitioning for LS zonation30

Once, for all the SU sets computed using different modelling parameters (i.e., different a (surface area) and c (circular variance)

values), (i) the SU terrain aspect segmentation metric F (a,c) – that assesses how well the requirements of internal homogene-

ity/external heterogeneity are fulfilled – has been established (2a in Fig. 1 and Section 4 (Espindola et al., 2006)), and (ii)
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the performance of the individual LS models are estimated using the AUCROC metric R(a,c) – that assesses the calibration

skills of the LRM used for LS modelling – has also been established (2b in Fig. 1 and Section 5 (Rossi et al., 2010)), a proper

objective function S that combines the aspect segmentation metric (F (a,c)) and the AUCROC calibration metric (R(a,c)) is

established. Maximization of S(a,c) as a function of the a (the minimum surface area of the slope-unit) and c (the slope-unit

circular variance) modelling parameters allows to single out the optimal SU terrain subdivision for LS modelling in the given5

study area.

The reason for proposing a combination of the aspect segmentation and the AUCROC metrics in the search for an optimal

terrain subdivision for LS modelling is the following. The single segmentation metric F (a,c) is a measure of the degree of

fulfillment of inter-unit homogeneity and intra-unit heterogeneity for a SU delineation obtained with given (a, c) values. As

such, F (a,c) is related only to the geometrical delineation of the SU, and does not consider the subsequent application of a LS10

model, the presence/absence of landslides, or any quantity other than terrain aspect. Thus, if only the F (a,c) metric is used to

select a particular set of modelling parameters, the resulting “optimal” (best) set of SU has the only meaning of “best partition

of the territory in terms of aspect segmentation”. Similarly, the R(a,c) metric considers solely the classification results of the

LS model, and not the geometry of the single SU, some of which may be inadequate (e.g., too large, too irregular, too small) for

the scope of the terrain zonation. To specialize the SU delineation for the particular purpose of LS modelling, we combine the15

F (a,c) and R(a,c) metrics to obtain an “optimal” (best) set of SU that simultaneously satisfies morphological homogeneity

requirements and provides a set of SU best suited for LS prediction.

7 Test area

We tested our proposed modelling framework for the delineation of SU, and for the selection of the optimal modelling param-

eters for LS assessment, in a portion of the Upper Tiber River basin, Central Italy (Fig. 4A). In the 2,000 km2 area, elevation20

ranges from 175 m to 1571 m, and terrain gradient from almost zero along the river plains, to more than 70o in the mountains

and the steepest hills. Four lithological complexes, or groups of rock units (Cardinali et al., 2001), crop out in the area, includ-

ing: (i) sedimentary rocks pertaining to the Umbria–Marche sequence, Lias to lower Miocene in age, (ii) rocks pertaining to

the Umbria turbidites sequence, Miocene in age, (iii) continental, post-orogenic deposits, Pliocene to Pleistocene in age, and

(iv) alluvial deposits, recent in age. Each lithological complex comprises different sedimentary rock types varying in strength25

from hard to weak and soft rocks. Hard rocks are massive limestone, cherty limestone, sandstone, travertine, and conglomer-

ate. Weak rocks are marl, rock-shale, sand, silty clay, and stiff over-consolidated clay. Soft rocks are clay, silty clay, and shale.

Rocks are mostly layered and locally structurally complex. Soils in the area reflect the lithological types, and range in thickness

from less than 20 cm where limestone and sandstone crop out along steep slopes, to more than 1.5 m in karst depressions and

in large open valleys.30

To model LS, we use a digital representation of the terrain elevation, an inventory of known landslides, and relevant geo-

environmental information. We use a DEM with a ground resolution of 25 m × 25 m obtained through linear interpolation of

elevation data along contour lines shown on 1:25,000 topographic base maps (Cardinali et al., 2001) (Fig. 4A). The landslide
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inventory (Fig. 4B) was obtained from the visual interpretation of multiple sets of aerial photographs flown between 1954

and 1977, aided by field surveys, review of historical and bibliographical data, and geological, geomorphological and other

available landslide maps (Cardinali et al., 2001; Galli et al., 2008; Guzzetti et al., 2008; Alvioli et al., 2014). To prepare the LS

model we considered only the shallow slides, the deep-seated slides, and the earth flows. These landslides are (i) slow to very

slow moving failures, and (ii) they typically remain in the slope (i.e., the slope-unit) where they occur. For the deep-seated5

landslides and the earth flows, the landslide source (depletion) area and the deposit were considered together. This is a standard

approach in modelling LS for these types of landslides. We excluded from the LS modelling all the rapid to fast-moving

landslides, including debris flows and rock falls that may travel outside the slope (i.e., the slope-unit) where they form.

We obtained lithological information (Fig. 5A) from available geological maps, at 1:10,000 scale (Regione Umbria), pre-

pared in the framework of the Italian national geological mapping project CARG and in other regional geological mapping10

projects. The original maps, in vector format, were edited to eliminate and reclassify polygons coded as landslide deposits or

debris flow deposits, and to reclassify the original 186 geologic formations and 20 cover types in five lithological complex,

or lithological domains (Table 2). Definition of the five lithological complexes was made on the basis of the characteristics of

the rock types (carbonate, terrigenous, volcanic, post-orogenic sediments) and the degree of competence or composition of the

different geological units (massive, laminated sandstone/pelitic-rock ratio). Applying these criteria, the original 206 geological15

units were grouped in 17 lithological units. We obtained information on land cover from a map, at 1:10,000 scale (Regione

Umbria), prepared through the visual interpretation of colour aerial photography at 1:13,000 scale, acquired in 1977 (Fig. 5B).

The map contains 13 land cover classes, of which the most common are forest (42%), arable land (31%), meadow and pasture

(10%), built up areas (10%), and vineyards, live trees and orchards (6%).

The study area (Fig. 4) corresponds to an "alert zone" used by the Italian national Department for Civil Protection to issue20

landslide (and flood) regional warnings. The boundary of the alert zone is partly administrative, and does not correspond locally

to drainage and divides lines. As a result, our SU partitioning intersects locally the boundary of the alert zone. For convenience,

for our analysis we considered only SU that fall entirely within the alert zone. As a drawback, the extent of the study area varies

slightly depending on the combination of the selected a and c parameters. We maintain that this has a negligible effect on the

final modelling results.25

8 Results

8.1 Slope-units delineation

In the study area, we ran the r.slopeunits software for 99 different combinations of user-defined input parameters, result-

ing in 99 different terrain subdivisions. In the iterative procedure (Fig. 2), the initial FA threshold (t) area and the reduction

factor (r) control the numerical convergence, and do not have an explicit geomorphological meaning. On the other hand, the30

minimum area (a) and the circular variance (c) determine the size and control the aspect of the SU. For the analysis, we selected

a large value for the FA area (t = 5 × 10 6 m2) keeping it constant for all the different model runs. The large value was chosen

to obtain large initial HB that could be further subdivided into smaller SU by the iterative procedure (see Section 4). The value
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is also consistent with (i.e., substantially larger than) (i) the size of the average SU used to partition the same area in a different

LS modelling effort (Cardinali et al., 2001, 2002), and (ii) the average area of the considered landslides (shallow slides, the

deep-seated slides, and the earth flows) in the study area (Guzzetti et al., 2008). Selection of the reduction factor (r = 10) was

heuristic, and motivated by the fact that this figure provided stable results compared to those obtained using larger values. The

two most relevant parameters, the minimum area a, and the circular variance c, were selected from broad ranges: a = 10,000,5

25,000, 50,000, 75,000, 100,000, 125,000, 150,000, 200,000, and 300,000 m2, and 0.1 < c < 0.6, at evenly spaced values with

an increment of 0.05. For all the r.slopeunits model runs, we used the same value for cleansize = 20,000 m2, to

remove candidate SU with area < 20,000 m2 using the first (and simplest) of the three methods described in Section 3.2.

Fig. 6 shows nine of the 99 results of the terrain subdivisions obtained using different combinations of the a and c modelling

parameters. The map in the upper left (lower right) corner shows the finest (coarsest) SU partitioning, determined using small10

(large) values of a and c. The map in the centre was obtained using intermediate values for the two user-defined modelling

parameters. For a limited portion of the study area, Fig. 7 shows different partitioning results. In particular, Figs. 7A and 7B

show the overlay of the three different partitions with the landslide inventory map (Fig. 4), using a 2-dimensional visualization

and a shaded image relief of the terrain, whereas Figs. 7C, 7D and 7E show separately the same partitions using a 3-dimensional

representation. Visual inspection of Figs. 7A, 7B and 7C reveals that the coarser subdivision (c = 0.60 and a = 0.3 km2),15

shown in blue, defines large SU characterized by heterogeneous orientation (aspect) values. On the other hand, the finest SU

subdivision (shown in green in Figs. 7A, 7B and 7E) obtained using c = 0.10 and a = 0.01 km2, is too small to include

completely many of the landslides (shown in yellow). The combination that uses intermediate values c = 0.35 and a = 0.15

km2 resulted in the SU subdivision shown in red in Figs. 7B and 7D.

Fig. 8 shows the effect of different combinations of a and c on the average SU size. The average area of the SU increases20

significantly with c (less homogeneous, more irregular slope), and it is less sensitive to the increment of a (Fig. 8A). The effect

of c becomes predominant in Fig. 8B. The standard deviation of the area of the SU varies significantly with c, highlighting that

larger values of c increase the average and the variability of the SU size (Figs. 8A and 8B, respectively).

8.2 Segmentation metric

For each of the 99 terrain subdivisions obtained using the procedure described above, we calculated the segmentation objective25

function value given by Eq. (3). The segmentation metric F (a,c) (Fig. 9) is a measure of the performance of our SU delineation

algorithm, and an assessment of how well the requirements of internal homogeneity/external heterogeneity are fulfilled by the

procedure, as a function of a and c (2a in Fig. 1, Section 4). Where the SU are relatively small, their degree of internal

homogeneity is large, but the requested heterogeneity between adjacent units is not fulfilled, completely. Where the SU are

large, the requested internal homogeneity is not fulfilled entirely, because in each SU the aspect variability is large. The analysis30

of the F (a,c) values in Fig. 9 suggests that SU subdivisions obtained using c smaller than about 0.2 and a smaller than about

50,000 m2, or c larger than about 0.5, should not be considered in the analysis, because they are too small or too large to satisfy

the aspect variability requirement.
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8.3 Landslide susceptibility modelling

For each of the 99 SU delineations, we prepared a different LS zonation using a Logistic Regression Model (Section 6) adopting

the modelling scheme described by Rossi et al. (2010). Fig. 10 shows the results obtained for nine (out of 99) combinations

of the a and c parameters. For each of the 99 susceptibility assessments, we evaluated the fitting (calibration) performance

of the models computing AUCROC (Rossi et al., 2010), and Fig. 11 shows the obtained AUCROC as a function of the a and c5

parameters (Section 5).

The larger values of AUCROC were obtained for LS zonations based on SU partitions resulting from large values of c and a.

Such combinations may result locally in SU with extremely large internal heterogeneity. Signatures of the heterogeneity within

very large slope-units can be found both in the segmentation metric and in the LRM model results. In the segmentation metric

case this is very straightforward since the values of F (a,c), which is a direct measure of the slope aspect homogeneity within10

SU, clearly decrease with increasing values of a and c, as shown in Fig. 9. Very large SU, however, are not only heterogeneous

in terms of terrain aspect, but also in terms of the morphometric and thematic variables used as input of the LRM. This is

reflected in the number of input variables that significantly contribute to the susceptibility model results, as a function of a and

c. We computed the number of statistically significant variables in each realization of the LRM (i.e., the variables with a p–value

< 0.05). Fig. 12 shows that the number of significant variables ranges from 5% (of the 50 morphometric and thematic variables)15

for large SU, to 35% for small SU. From this analysis we observe that for very large slope units, only very few variables are

effectively used by the LRM. A more detailed analysis reveals that, in our test case, lithological variables significantly control

the results, whereas other local settings (e.g. terrain slope) are neglected. The relevant variables are typically the terrigenous

sediments and carbonate lithological complexes, where landslides are expected and not expected, respectively. As a result, in

the region of large (a,c) parameters, even if we obtain high values of AUCROC, the LRM can be replaced by a simple heuristic20

analysis of the lithological map. The fine details of the remaining input variables are lost and a multivariate statistical approach

is of little use. We clarify that to evaluate the model performance, any statistical metric based on the comparison of observed

and predicted data (e.g. confusion matrices and derived indexes), would exhibit the same or similar trend as the AUCROC as a

function of the SU size.

8.4 Optimization of the SU partition for LS modelling25

Values of F (a,c) indicate that there are combinations of the c and a parameters that result in SU subdivisions that do not satisfy

the user requirements in terms of SU internal homogeneity and external heterogeneity (Fig. 8) (Section 8.2). On the other hand,

the AUCROC metric increases with the average size of the SU (Fig. 11) (Section 8.3). To select the optimal terrain partitioning

for LS zonation in our study area, we exploit the objective function S(a,c), which simultaneously quantifies (Section 6):

(i) the SU internal homogeneity and external heterogeneity, and (ii) the (fitting) performance of the LS model (Fig. 13B).30

Maximization of S(a,c) provides the best combination of the (a, c) modelling parameters for a terrain subdivision optimal for

LS modelling, in our study area. In agreement with our initial aim, the subdivision satisfies the requirements of: (i) providing

a consistent subdivision of the landscape into SU of variable size and shape, (ii) producing a terrain subdivision able to detect
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the variability of terrain aspect, and (iii) and being best-suited for the production of a reliable LS model, and associated terrain

zonation.

To combine the two functions R(a,c) and F (a,c) into a single objective function, we normalized them to [0,1] as follows:

Ro(a,c) =
R(a,c) − Rmin(a,c)

Rmax(a,c) − Rmin(a,c)
(9)

Fo(a,c) =
F (a,c) − Fmin(a,c)

Fmax(a,c) − Fmin(a,c)
. (10)5

The functions Ro(a,c) and Fo(a,c), shown in Fig. 13A, are then be multiplied to obtain the final objective function S(a,c),

S(a,c) =Ro(a,c)Fo(a,c) , (11)

which embodies information on the quality of the terrain aspect map segmentation and on the performance of the LS model in a

consistent, objective and reproducible way. The function S(a,c) assumes values in the range [0,1]: the larger the value the better

the SU partitioning in terms of (i) SU internal homogeneity and external heterogeneity, and (ii) suitability of the subdivision10

for LS zonation, in our study area. The function S(a,c) (Fig. 13B), calculated in our test case for different combinations of the

a and c modelling parameters, has a maximum value at a = 150,000 m2 and c = 0.35. The set of SU that corresponds to the

optimal combination of the modelling parameters can be singled out as our “optimal” (best) result.

9 Discussion and conclusions

Compared to other terrain subdivisions, slope-units (SU) are a type of morphological terrain unit bounded by drainage and15

divide lines, well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize

natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental

and geomorphological analysis, and in particular for landslide susceptibility (LS) modelling and zonation (Carrara et al.,

1991, 1995; Guzzetti et al., 1999; Guzzetti, 2006). Despite the clear advantages of SU over competing mapping units for LS

modelling (Guzzetti, 2006), inspection of the literature reveals that only a small proportion (8%) of the LS zonations prepared20

in the last three decades worldwide was performed using SU (Malamud et al., 2014). The limited use of SU for LS modelling

and zonation is due – among other factors – to the unavailability of readily available, easy to use software for the accurate

and automatic delineation of SU, and to the intrinsic difficulty in selecting a priori the appropriate size of the SU, for proper

terrain partitioning in a given area.

To contribute to fill this gap, we developed new software for the automatic delineation of SU in large and complex geograph-25

ical areas based on terrain elevation data (i.e., a DEM) and a small number of user defined parameters. We further proposed and

tested a procedure for the optimal selection of the user parameters through the production of a significant number (99) of real-

izations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy.

Results showed that new r.slopeunits software was capable of capturing the morphological variability of the landscape,

and to partition the study area into SU subdivisions of different shapes and sizes well suited for LS modelling and zonation.30
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Depending on the type of landslides, the scale of the available DEM, the morphological variability of the landscape, and the

purpose of the zonation, the detail of the terrain subdivision may vary. A detailed terrain partitioning, with many small SU,

is required to capture the complex morphology of badlands, or to model the susceptibility to small and very small landslides

(i.e. soil slips). A coarse terrain subdivision is best suited for modelling the susceptibility of very old and very large, deep-

seated, complex and compound landslides. Coarse subdivisions can also be used to model the susceptibility to channelled5

debris flows that travel long distances from the source areas to the depositional areas. Subdivisions of intermediate size may be

required for medium to large slides and earth flows (Carrara et al., 1995). By tuning the set of user defined model parameters,

r.slopeunits can prepare SU terrain subdivisions for LS modelling in different geomorphological settings.

We clarify that the subdivisions produced by r.slopeunits using different (a, c) parameters are nested i.e., the bound-

aries of a coarse resolution subdivision encompass the boundaries of intermediate and finer subdivisions (see C, D, E in Fig.10

7). This is a significant operational advantage where landslides of different sizes and types coexist, posing different threats

and requiring multiple and combined susceptibility assessments, each characterized by a different terrain subdivision (Carrara

et al., 1995).

We expect that the r.slopeunits software will be used to prepare terrain subdivisions in different morphological settings,

contributing to the preparation of reliable and robust LS models and associated zonations. We acknowledge that further work15

is required to investigate the optimization of SU partitions for different statistically-based tools used in the literature for LS

modelling and zonation (e.g., discriminant analysis, neural network). Guzzetti et al. (2012) have argued that lack of standards

hampers landslide studies. This is also the case for the production of landslide susceptibility models and associated maps. We

expect that systematic use of the modelling framework proposed in this work (Fig. 1, Section 2) and of the r.slopeunits

software for the objective selection of the user defined modelling parameters, will contribute to the production of more reliable20

landslide susceptibility models. Il will also facilitate the meaningful comparison of landslide susceptibility models produced

e.g., in the same area using different modelling tools, or in different and distant areas using the same or different modelling

tools.

Finally, we argue that the proposed modelling framework and the r.slopeunits software are general and not site or

process specific, and can be used to prepare terrain subdivisions for scopes different from landslide susceptibility mapping,25

including e.g., definition of rainfall thresholds for possible landslide initiation, distributed hydrological modelling, statistically-

based inundation mapping, and the detection and mapping of landslides and other instability processes from satellite imagery.

10 Appendix A2 - Code Availability

The code r.slopeunits is free software under the GNU General Public License (>=v2). Details about the use and redis-

tribution of the software can be found in the file https://grass.osgeo.org/home/copyright/ that comes with GRASS GIS. The30

software and a short user manual can be downloaded at http://geomorphology.irpi.cnr.it/tools/slope-units

15

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



11 Appendix A1 - Notation

In Table 1 we list the main variables and the acronyms used in the text.

Table 1. Main variables and acronyms used in the text.

Variable Explanation First introduced Dimensions

a minimum surface area for the SU Section 3.1 m2

c minimum circular variance Section 3.1 –

r reduction factor Section 3.1 –

t flow accumulation threshold Section 3.1 m2

I Autocorrelation index Eq. (1) –

V Local aspect variance Eq. (2) –

F (V,I) Aspect segmentation metric, also F (a,c) Eq. (3) –

R(a,c) AUCROC metric for LRM calibration Section 3.1 –

S(a,c) Combined segmentation & AUCROC metric Eq. (11) –

Acronym Explanation

AP Alluvial Plain

AUC Area Under the Curve

DEM Digital Elevation Model

FA Flow Accumulation

FPR False Positive Rate

GIS Geographical Information System

HB Half Basin (left and right portion of a slope unit)

LRM Logistic Regression Model

LS Landslide Susceptibility

MFD Multiple Flow Direction

ROC Receiver Operating Characteristic

SFD Single Flow Direction

SU Slope Unit, a morphological terrain unit

bounded by drainage and divide lines

TPR True Positive Rate

TU Terrain Unit, a subdivision of the terrain
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Complex Code

Carbonate

Massive Layers CC1

Thin Layers CC2

Marl, Calcareous Marl CC3

Terrigenous

Massive Sandstone CT1

Variable SD/P fraction

Thick Layers CT21

Medium Layers CT22

Thin Layers CT23

Marly, SD/P<<1 Stratified CT31

Post-Orogenic

Conglomerate, Gravel, Pebble CPO2

Sand CPO3

Silt and Clay CPO4

Variable CO/S/G fraction CPO24

Others Olistostrome OLI

Quaternary Deposit

Alluvial Deposit A

Debris Cone QDF

Red Soil in Karstic Landscape TRDC

Travertine T

Table 2. Lithological codes used in Fig. 5. SD = sandstone, P = pelitic rock, CO = conglomerate, S = sand, G = clay (Regione Umbria).
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PARAMETER COMBINATION #N
PARAMETER COMBINATION # …

1
FIGS. 2 & 6 – SECTIONS 3 & 8.1

3
MAXIMIZATION OF COMBINED SEGMENTATION (FIG. 9)

& SUSCEPTIBILITY METRIC (FIG. 11)
OBJECTIVE FUNCTION

2a 2b

PARAMETER COMBINATION #1

PARAMETRIC SLOPE UNITS DELINEATION

LANDSLIDE
SUSCEPTIBILITY

MODELLING

SECTIONS 5 & 8.3

ASSESSMENT OF ASPECT
SEGMENTATION QUALITY

SECTIONS 4 & 8.2

FIG. 13 – SECTIONS 6 & 8.4

4 OPTIMAL PARAMETERS FOR SLOPE UNITS
DELINEATION

Figure 1. Logical framework for the proposed method for (1) the parametric delineation of slope-units (SU), (2a) the assessment of the

quality of terrain aspect segmentation using of a proper segmentation objective function, (2b) the calculation and assessment of the quality

of the landslide susceptibility (LS) modelling using a standard metric (the Area Under the Curve of Receiver Operating Characteristic –

AUCROC metric), and (3) the definition and maximization of a combined objective function for (4) the determination of optimal parameters

for the delineations of slope-units (SU) beste suited for landslide susceptibility (LS) modelling and zonation.
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Figure 2. Flowchart for the r.slopeunits software. (A) Input data and parameters. AP, map showing plain areas to be excluded from the

processing; DEM, digital elevation model; t, initial FA threshold area; a minimum area; c, circular variance; r, reduction factor; maxarea,

maximum SU area; cleansize, size of candidate SU to be removed; see text for detailed explanation. (B) r.watershed processing in

GRASS GIS (Neteler and Mitasova, 2007). (C) Tests if the produced HB are in a plain area. (D) The average area of new HBchild in each

HBparent is checked against a. (E) HBchild are individually checked against a and c requirements. (F) The process proceeds to iteration i+1

for those HBchild that still do not meet the requirements, with an updated ti+1 = ti− ti/r FA threshold. (G) Small polygons are removed

from the candidate SU set.
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Figure 3. Graphical representation of the circular variance of terrain aspect, 1− |R|/Nv . Two groups of unit vectors are shown. The unit

vectors represent the local direction of terrain aspect for each grid-cell, resulting in circular variance (A) of 0.1 and (B) of 0.6. Unit vectors

are perpendicular to the local topography, represented by the grid-cell.
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A B

Figure 4. (A) Shaded relief image of the study area located on the Upper Tiber River basin, Umbria, Central Italy. Shades of green to brown

show increasing elevation. Inset shows location of the study area in Italy. (B) Landslide inventory map (Cardinali et al., 2001). Inset shows

the detail of the landslide mapping. Landslides (shown in red) were used to prepare the landslide susceptibility zonations shown in Fig. 10.

The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.
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A B

Figure 5. (A) Lithological map of Upper Tiber River basin, Umbria, Central Italy (Regione Umbria). Details of the lithological types are

given in Table 2. (B) Land use map of the study area. Legend: AE: urban area, AN: bare soil, AQ: water, BO: forest, CA: orchard, CO: olive

grove, CV: vineyard, LP: poplar trees, NN/NX: unclassified, PA: meadow/pasture, SA: treed seminative, SS: simple seminative. The maps

are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.
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Figure 6. Nine (out of 99) slope-units (SU) terrain subdivisions for a portion of the study area. The SU were obtained changing the a and c

parameters used by the r.slopeunit software. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.
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0 1 km

Figure 7. Example of subdivisions into slope-units (SU) for a portion of the study area. Legend: Blue, red, and green lines show boundaries

of SU of increasing density and corresponding decreasing average size. Yellow areas are landslides. The five maps show the same area in

plan view (A) and in perspective view (B, C, D, and E).
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Figure 8. (A) Average and (B) standard deviation of the size of the slope-units (SU), for different combinations of a and c parameters. The

minimum size of the SU is fixed by the a parameter, and the maximum size of the SU is independent of a.
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Figure 9. Segmentation objective function values (Eq. (3)) calculated for 99 slope-units (SU) partitions obtained using different combinations

of the a and c parameters.

29

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-118, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 21 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 10. Nine (out of 99) landslide susceptibility (LS) maps obtained with different slope-units (SU) partitions resulting from different

combinations of the a and c parameters. The maps are in the UTM zone 32, datum ED50 (EPSG:23032) reference system.
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Figure 11. Values of the Area Under the ROC Curve (AUCROC) calculated for landslide susceptibility (LS) maps estimated using slope-units

(SU) partitions derived for different combination of the a and c user-defined modelling parameters.
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Figure 12. Percentage of relevant variables in the Logistic Regression Model (LRM) used in this work to prepare the landslide susceptibility

(LS) maps as a function of the a and c user-defined modelling parameters. Combination of a and c are the same used to prepare Fig. 11. Note

that the direction of the axes are reversed with respect to Fig. 11.
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Figure 13. (A) Ro(a,c) (blue) and Fo(a,c) (red) functions, defined by Eqs. (9), (10). (B) So(a,c) function defined by Eq. (11). The functions

were interpolated on a denser mesh for improved visual representation.
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